
KRDB RESEARCH CENTRE

KNOWLEDGE REPRESENTATION
MEETS DATABASES

Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
Tel: +39 04710 16000, fax: +39 04710 16009, http://www.inf.unibz.it/krdb/

KRDB Research Centre Technical Report:

Theoretical Foundations of
an Ontology-Based Visual Tool
for Query Formulation Support 1

Paolo Guagliardo

1Master’s thesis for the European Master’s Programme in Computational Logic.
Vienna University of Technology (VUT), Austria. Free University of Bozen-Bolzano
(FUB), Italy. Supervisors: Proff. Thomas Eiter (VUT) and Enrico Franconi (FUB).

Affiliation Free University of Bozen-Bolzano
Corresponding author Paolo Guagliardo

paolo.guagliardo@stud-inf.unibz.it
Keywords ontology, query, framework, description logics,

automated reasoning
Number KRDB09-05
Date 07-10-09
URL http://www.inf.unibz.it/krdb/

http://www.inf.unibz.it/krdb/
mailto:paolo.guagliardo@stud-inf.unibz.it
http://www.inf.unibz.it/krdb/

c© KRDB Research Centre for Knowledge and Data. This work may
not be copied or reproduced in whole or part for any commercial purpose.
Permission to copy in whole or part without payment of fee is granted for
non-profit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permis-
sion of the KRDB Research Centre, Free University of Bozen-Bolzano, Italy;
an acknowledgement of the authors and individual contributors to the work;
all applicable portions of this copyright notice. Copying, reproducing, or re-
publishing for any other purpose shall require a licence with payment of fee to
the KRDB Research Centre.

Abstract

Recent research showed that adopting formal ontologies as a means
for accessing heterogeneous data sources has many benefits, in that not
only does it provide a uniform and flexible approach to integrating and
describing such sources, but it can also support the final user in querying
them, thus improving the usability of the integrated system.

The Query Tool is an experimental software supporting the user in
the task of formulating a precise query – which best captures their inform-
ation needs – even in the case of complete ignorance of the vocabulary
of the underlying information system holding the data. The intelligent
interface of the Query Tool is driven by means of appropriate automated
reasoning techniques over an ontology describing the domain of the data
in the information system.

Although an implementation does exist, there is no characterisation
of the Query Tool from the formal point of view, that precisely describes
how such a system works and on which theoretical foundations it relies.
Indeed, the central purpose of this thesis is that of providing a formal
framework in which the Query Tool’s components and operations are
defined in a precise and unambiguous way.

We will describe what a query is and how it is internally represented
by the Query Tool, which operations are available to the user in order to
modify the query and how the tool provides contextual feedback about
it presenting only relevant pieces of information. Moreover, we will also
investigate in detail how a query can be represented in a suitable “linear
form”, so that it can more easily be expressed in natural language.

As a conclusive part of our work, a new implementation of the Query
Tool, superseding the existing one and complying with the formal spe-
cification, has been devised. At present, the new system includes only the
core of the Query Tool and is meant to provide a demonstrative though
fully functional implementation based on our framework.

Contents

Contents iii

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Motivation . 2
1.2 Previous Work . 5
1.3 Contribution . 6
1.4 Structure of the Thesis . 7

2 Preliminaries 8
2.1 Conjunctive Queries . 8
2.2 Binary Relations, Orders, and Functions 9
2.3 Graphs and Trees . 14
2.4 Description Logics . 17

3 Theoretical Foundations 21
3.1 Formal Definition of the Framework 22
3.2 Functional API . 28

3.2.1 Reasoning services . 31
3.2.2 Operations on queries 32
3.2.3 Linearisation constraints 34

3.3 Main Results . 36

4 Implementation 39
4.1 Structure and Design . 39
4.2 Code Examples . 42
4.3 Usage Notes for the Graphical User Interface 44

5 Conclusion and Future Work 48
5.1 Co-references in queries . 48
5.2 n-ary relations . 49
5.3 Attributes and datatypes . 50

A Class Diagrams 51

B GUI Screenshots 54

Bibliography 57

iii

List of Figures

1.1 Query Tool’s substitution menu . 3
1.2 Conceptual schema derived with the support of Query Tool 5

3.1 Examples of query and subquery 24
3.2 Graphical notation for selections 25
3.3 Different types of simple selection 25
3.4 Example of weakening . 26
3.5 Example of grafting . 27
3.6 Context of a query with respect to a focus node 30
3.7 Addition of a compatible term/relation 33
3.8 Examples of pruning and deletion 34
3.9 Example of specialisation . 35

4.1 Package diagram of the Query Tool 40

5.1 Queries with co-references . 49
5.2 Reification of a ternary relationship 50

A.1 Class diagram for the package it.unibz.qtool.model 51
A.2 Class diagram for the package it.unibz.qtool.lang 52
A.3 Class diagram for the package it.unibz.qtool.owl 52
A.4 Class diagram for the base package it.unibz.qtool 53

B.1 The starting atomic query . 54
B.2 Substitution menu . 55
B.3 Addition menu . 55
B.4 Filtered choices . 56
B.5 Hovering and highlight of related words 56

iv

List of Tables

2.1 Most common properties of binary relations 10
2.2 Strict and non-strict partial/total orders 11

4.1 Correspondence between DL and Java interfaces in Query Tool . . 41

v

Acknowledgements

I would like to thank Prof. Enrico Franconi of the KRDB Research Centre at the
Free University of Bozen-Bolzano for his invaluable support and contribution
to this thesis. A special thank goes also to Dr. Sergio Tessaris for his precious
advices and technical insights into the implementation of the Query Tool.

Last but not least, I thank my supervisor Prof. Thomas Eiter for coordinat-
ing my work at the Vienna University of Technology, as well as my family, my
friends, my colleagues and all the people who supported me during my study
career.

vi

CHAPTER 1
Introduction

The main purpose of this thesis is to provide the reader with the understanding
of the theoretical foundations at the basis of a visual tool supporting query
formulation over an ontology. Such a tool exists in the form of an experimental
software, simply called the “Query Tool”, using many of the ideas that have
been introduced in previous research work [2, 12, 11]. However, a precise and
formal definition of the framework in which the tool operates has not been
provided yet, and this thesis is an attempt to fill such gap.

The Query Tool is a software which enables access to heterogeneous data
sources by means of the conceptual schema provided by an ontology and sup-
ports the users in the task of formulating a precise query over it. In describing
a specific domain, the ontology defines a vocabulary which is often richer than
the logical schema of the underlying data and usually closer to the user’s own
vocabulary. The ontology can thus be effectively exploited by the user in or-
der to formulate a precise query which best captures their information need.
The user is constantly guided and assisted in this task by an intuitive visual
interface, whose intelligence is dynamically driven by “reasoning” over the onto-
logy. The inferences drawn on the conceptual schema help the user in choosing
what is more appropriate with respect to their information need, restricting
the possible choices to only those parts of the ontology which are relevant and
meaningful in a given context.

The most powerful and innovative feature of the Query Tool lies in the fact
that not only do not users need to be aware of the underlying organisation
of the data, but they are also not required to have any specific knowledge of
the vocabulary used in the ontology. In fact, such knowledge can be acquired,
step by step, while using the tool itself, gaining confidence both with it and
the ontology. Furthermore, users may decide to just “explore” the ontology
without actually querying the information system, with the aim of discovering
general information about the modelled domain.

Another very important aspect is that the Query Tool generates only queries
that can be actually satisfied, since contradictory or incompatible pieces of in-
formation are not presented to the user at all. This makes user’s choices clearer
and simpler, by ruling out irrelevant information that might be distracting and

1

Chapter 1. Introduction 2

even generate confusion. Moreover, it also eliminates the often frustrating and
time-consuming process of finding the right combination of parts constituting
a meaningful query. For this reason, the user is thus completely free to explore
the ontology and express their information need without the worry of making
a “wrong” choice at some point.

Queries can be specified through a refinement process consisting in the iter-
ation of few basic operations: the user first specifies an initial request starting
with generic terms, then refines or deletes some of the previously added terms
or introduces new ones, and iterates the process until the resulting query sat-
isfies their information need. The available operations on the current query
include addition, substitution and deletion of pieces of information, and all of
them are supported by the reasoning services running over the ontology.

1.1 Motivation

In this section we present a small example showing how, with the support of the
Query Tool, an ontology can be explored in order to discover information about
it and the domain it models. Our only goal here is to give the reader a first idea
of the Query Tool’s potential and field of application, hence the chosen example
is deliberately simple and it does not exploit the full capabilities of the tool.
For the moment, the tone adopted is also quite informal, as opposed to the one
that will be generally used throughout this thesis. The same example will then
be extended and analysed in more detail in Chapter 3, in order to facilitate a
better understanding of the formal definitions that will be introduced there.

Consider a scenario in which we have an ontology and know nothing about
it. For this reason, though a bit skeptical, we decide to ask the Query Tool for
help. The tool shows us a string of text, representing a query over our ontology,
like the following:

“I’m looking for something” . (Q1)

True, but not very helpful: we would like to be more precise about our request.
Thus, we select the word “something” and ask to perform on it an operation
called substitution, consisting in the replacement of the selected portion of query
(that is, the selection) with a different term. We choose such substituting term
from a set of suitable ones, which are computed by the Query Tool and depend
on the current query and selection. In particular, we are provided with a menu
divided into three parts and organised as follows:

• in the upper part are listed terms that are more general than the selection;

• in the middle part are those terms (if any) equivalent to the selection;

• in the lower part are listed terms that are more specific than the selection.

Moreover, from each of the terms in the upper (lower) part we can access nested
sub-menus with more and more general (specific) terms, if any. A graphical
example of this kind of menu structure is shown in Figure 1.1a, where:

4 indicates that the term is more general than the selection;

� indicates that the term is equivalent to the selection;

Chapter 1. Introduction 3

5 indicates that the term is more specific than the selection.

The symbol “I” signals the availability of a sub-menu for further generalisation
or specialisation. Note that �-terms never have sub-menus, while the sub-menu
of a4-term (5-term) only contains terms that are more general (specific) than
it. For instance, every menu item in Figure 1.1a of the form Item 1.x is more
general than Item 1 and every menu item of the form Item 4.y is more specific
than Item 4.

4 Item 1

4 Item 2

� Item 3

5 Item 4

5 Item 5

I

I 5 Item 4.1

5 Item 4.2

5 Item 4.3

4 Item 1.2

4 Item 1.1

(a) General structure

5 Person I 5 SinglePerson

5 Man

5 Woman

(b) Concrete example

Figure 1.1: Query Tool’s substitution menu

Coming back to our example, Figure 1.1b shows the menu that the Query
Tool gives us when asking for the substitution of the term “something” in (Q1).
Thus, we find out that a person may be a man, a woman or single, and we begin
thinking that our ontology must talk about persons and perhaps relationships
among them. We then choose the term “Person” and obtain the query:

“I’m looking for a person” . (Q2)

Next, we decide to further refine our query, this time not by means of a substi-
tution of terms, but by adding a relation to the term “person”. The Query Tool
answers that the only suitable relation having a person as subject is “married
to”, with term “Person” as object. The result of adding this relation to (Q2)
is shown below:

“I’m looking for a person who is married to a person” . (Q3)

At this point, an attempt to specialise the leftmost term “person” results in the
following options: “Man” and “Woman”. Note that the term “SinglePerson” is
not available here, even though it was listed as a possible choice in Figure 1.1b
for the substitution of the term “something” in (Q1). In fact, the Query Tool
opportunely rules out the options that would cause the query to become unsat-
isfiable, and in this case we discovered that a single person cannot be married.
Since “SinglePerson” is also not given as an option for the specialisation of the
rightmost term “person”, we additionally suspect that the relation “married
to” is symmetric, that is, if a person A is married to a person B, then B is
married to A.

We decide to go on by substituting the leftmost “person” in (Q3) with the
term “Man”, obtaining the following query:

“I’m looking for a man who is married to a person” . (Q4)

Chapter 1. Introduction 4

In order to discover new information we then select the word “person” in (Q4)
and ask for a substitution: we get the more specific term “Woman” as the only
option, which makes us realise that in our ontology a man can only be married
to a woman. The substitution of “person” with “Woman” results in the query:

“I’m looking for a man who is married to a woman” . (Q5)

We now want to check whether a woman can only be married to a man and to
do so we first generalise “man” into “person” as follows:

“I’m looking for a person who is married to a woman” . (Q6)

and then again we ask for the substitution of the term “person” itself. As the
only option we get “Man”, confirming that in our ontology women cannot be
married to other than men.

We are now interested in understanding how a single person relates to men
and women. As we know that a single person cannot be married, we first select
the term “woman” in (Q6) and ask for its deletion. In the resulting query, the
relation “married to” disappears along with the selected term, as shown below:

“I’m looking for a person” . (Q7)

Then, we specialise “person” into “SinglePerson”, obtaining the following query:

“I’m looking for a single person” . (Q8)

Asking the Query Tool which terms are compatible with “single person” gives
“Man” and “Woman” as answers, meaning that a single person may in addition
be a man as well as a woman. If we choose to add the compatible term “Man”,
we obtain the following query:

“I’m looking for a single person who is a man” ; (Q9)

while choosing “Woman” turns (Q8) into:

“I’m looking for a single person who is a woman” . (Q10)

We now ask for further compatible terms in (Q9) or in (Q10), getting no results.
This tells us that a man cannot be at the same time a woman (and vice versa).

The information we have so far discovered and collected about our ontology
can be put together and organised into a class diagram in the Unified Modeling
Language (UML) enriched with two first-order logic (FOL) formulas, as shown
in Figure 1.2. The diagrammatic part expresses the following facts: a person is
either a man or a woman; a man can be married to a woman1 (and vice versa);
and some persons may be single. The FOL formulas are needed to impose the
additional constraints that “married to” is a symmetric relation and a single
person cannot be married.

1The only thing we are able to derive using the Query Tool is optional participation into
the “married to” relation, but we do not know the exact maximum multiplicity. Thus, we
allow for a man (woman) to be possibly married to more than one woman (man), although
the ontology could actually be more restrictive about this.

Chapter 1. Introduction 5

Person

SinglePerson Man Woman

{disjoint, complete}

married to

0..* 0..*

∀x, y . marriedTo(x, y)→ marriedTo(y, x)

∀x . SinglePerson(x)→ ¬
(
∃y . marriedTo(x, y)

)
Figure 1.2: Conceptual schema derived with the support of Query Tool

1.2 Previous Work

The intelligent interface known as Query Tool was devised for the first time in
2004, in the context of the SEmantic Webs and AgentS in Integrated Economies
(SEWASIE) research project [24], funded by the European Commission. The
goal of SEWASIE consisted in the design and implementation of an advanced
search engine, which enabled access to heterogeneous data sources on the web
via semantic enrichment in order to provide the basis of structured and secure
web-based communication. In that early version were already present most of
the ingredients that are now at the very core of the actual Query Tool. Here,
we summarise the fundamental ideas behind the SEWASIE tool and its main
features:

• focus paradigm: the manipulation of the query is always restricted to
a well defined and visually delimited sub-part of the whole query, called
the focus;

• substitution by navigation: the possibility of substituting the selected
portion of the query with more specific or more general terms;

• when operating on the focus, the remaining part of the query expression
is not ignored, but fully taken into account from the focus viewpoint ;

• refinement by compatible terms, that are terms in the ontology not
in hierarchy with the query expression and whose overlap with the focus
is non-empty;

• textual representation of the query in a natural language fashion.

In the course of the SEWASIE project, a usability evaluation of the Query
Tool was carried out [4, 3] with the purpose of measuring its complexity of use.
In particular, the study aimed at determining how difficult it is for the user
to formulate queries using the Query Tool and to understand the results. The
experiment involved two distinct groups of users, namely domain experts and
non domain experts. The former are users having specific knowledge about the

Chapter 1. Introduction 6

domain to be queried, while the latter have no particular skill in that area.
In order to evaluate the level of interplay between the users’ domain expertise
and the query formulation paradigm used in the Query Tool, different query
reading and query writing tasks were devised, along with a number of queries
of increasing complexity (according to a model of complexity opportunely de-
signed) and a questionnaire to capture relevant aspects of the interaction with
the interface. The experiment had the following outcome:

• the overall functionality and philosophy of the Query Tool interface are
well understood by all users;

• the amount of time spent to formulate a query depends only on its com-
plexity and not on the user’s domain expertise;

• the questionnaire reveals that the satisfaction of users in completing the
specific writing tasks is independent of the domain expertise.

The above results are very important in that they demonstrate that the Query
Tool can be easily used also by non-experienced users to formulate queries over
a domain in which they have no special expertise.

In order to have a richer and more flexible interface, the web-based version
of the Query Tool developed in the context the SEWASIE project was later on
converted into a stand-alone Java application [25]. Some important optimisa-
tions were then introduced [26], with the purpose of minimising the number of
reasoner calls and thus improving the responsiveness of the tool.

1.3 Contribution

The final purpose of the Query Tool is to generate a conjunctive query ready to
be executed by some evaluation engine associated with the information system
where data are stored. However, in this thesis we only deal with the aspect of
query “formulation” rather than “generation”, concentrating on the so-called
intensional navigation of the ontology, an example of which has already been
shown in Section 1.1. Thus, in what follows we will describe in great detail the
iterative refinement process through which users can formulate a meaningful
query, but we will completely disregard how such query is then converted by
the system into a form that is executable by a specific evaluation engine.

Although a software implementation does exist, there is no characterisation
of the Query Tool from the formal point of view that precisely describes how
such a system works and on which theoretical foundations it relies. The central
purpose of this thesis is indeed that of providing a formal framework in which
the Query Tool’s components and operations are defined in a precise and un-
ambiguous way. We will thus explain what a query is and how it is internally
represented by the Query Tool, which operations are available to the user in
order to modify the query and how the tool provides contextual feedback about
it presenting only relevant pieces of information.

It is important to point out that our work does not merely consist in the
formalisation of already existing ideas, since some of those have been further
refined, as well as new ones introduced. For instance, we extended the portion
of the query on which the user operates, by allowing different types of complex
selections. Moreover, we investigated in detail how a query can be represented

Chapter 1. Introduction 7

in a suitable “linear form”, so that it can more easily be expressed in natural
language. In fact, we introduced the notion of query “linearisation”, that is, a
sequence of “labels” satisfying certain constraints, which facilitates the textual
representation of the query by guiding the generation of natural language.

As a conclusive part of our work, a new implementation of the Query Tool,
superseding the existing one and complying with the formal specification, has
been devised. At present, the new system includes only the core of the Query
Tool and is meant to provide a demonstrative though fully functional imple-
mentation based on our framework.

1.4 Structure of the Thesis

The rest of this thesis comprises four additional chapters, which are organised as
follows. Chapter 2 introduces the reader to the mathematical tools we will use,
along with the corresponding notation. Chapter 3 formally defines the Query
Tool framework from a theoretical point of view and precisely describes its
functional Application Programming Interface (API) by specifying the abstract
operations it consists of. It also presents an approach to the representation of
a query in “linear form”.

Chapter 4 is dedicated to an experimental implementation, that is based on
the definitions given in Chapter 3. Finally, in Chapter 5, the achieved results
are summarised and considered as the starting point of further development
and research.

CHAPTER 2
Preliminaries

To formally define the Query Tool, we will make use of some mathematical no-
tions, that we opportunely present in this chapter. Along with the definitions,
we also introduce the notation and conventions used throughout the thesis.

We assume the reader to be familiar with logic and have some background
knowledge about query answering. For an introduction to the syntax and se-
mantics of predicate logic we suggest [19], while [1] is an extensive and excellent
reference on database theory. In what follows, we will make use of a first-order
relational vocabulary, that is, with no function symbols.

2.1 Conjunctive Queries

In first-order logic, a query is a formula φ with free variables x1, . . . , xk, which
we write as φ(x1, . . . , xk). Given an interpretation I and a variable assignment
α, the answer to a query φ(x1, . . . , xk) is defined as follows:

φ(x1, . . . , xk)I = {〈α(x1), . . . , α(xk)〉 | I, α |= φ(x1, . . . , xk)} . (2.1)

The conjunctive queries (CQs) are the fragment of first-order logic consisting of
all the formulas that can be constructed from atomic formulas (i.e., atoms and
equalities) using only conjunction (∧) and existential quantification (∃). Each
of these formulas can be efficiently rewritten in prenex normal form, hence CQs
are usually assumed to be of the following general form:

Q(x1, . . . , xk) = ∃xk+1, . . . , xn . F1 ∧ · · · ∧ Fm , (2.2)

where F1, . . . , Fm are atomic formulas in the variables x1, . . . , xn. Using ~x for
x1, . . . , xk and ~y for xk+1, . . . , xn, we can write (2.2) more compactly as

Q(~x) = ∃~y . conj(~x, ~y) , (2.3)

with conj(~x, ~y) = F1 ∧ · · · ∧ Fm.
Besides their logical notation, CQs can also be written as datalog rules. In

datalog notation, (2.3) becomes

Q(~x ′)← conj′(~x ′, ~y ′) , (2.4)

8

Chapter 2. Preliminaries 9

where conj′(~x ′, ~y ′) = A1, . . . , Ar is the list of atoms in conj(~x, ~y) obtained by
equating the variables x1, . . . , xn according to the equalities in the conjunction.
Note that, as a result of such equality elimination, we have that ~x ′ and ~y ′ may
actually contain constants and multiple occurrences of the same variable. The
variables in ~x ′ are called the distinguished variables of Q, while the ones in ~y ′

are non-distinguished. CQs without distinguished variables are called Boolean.
Moreover, we call Q(~x ′) the head of Q and conj′(~x ′, ~y ′) its body. Note also that,
although there are no quantifiers in datalog notation, variables appearing only
in the body of the rule are implicitly considered to be existentially quantified,
while those in the head are free.

The vast majority of queries that are most frequently issued on relational
databases are CQs, corresponding to the select-project-join queries (i.e., not us-
ing the union or difference operations) in relational algebra. Conjunctive quer-
ies also correspond to the select-from-where SQL queries in which the “where”
condition uses exclusively conjunctions of atomic equalities (that is, conditions
constructed from column names and constants, using no comparison operators
other than “=” and combined using “and”).

Many interesting problems that are computationally hard or undecidable for
larger classes of queries are instead feasible in the case of conjunctive queries,
making them one of the great success stories of database theory. For instance,
consider the problem of query containment that given two FOL queries φ and ψ
consists in checking whether, for all interpretations I and all assignments α, we
have that I, α |= φ implies I, α |= ψ. This problem, of special interest in query
optimisation, is undecidable for FOL (and for SQL and relational algebra), but
it is decidable and NP-complete for conjunctive queries [5].

2.2 Binary Relations, Orders, and Functions

In general, a binary relation R is defined as an ordered triple (A,B,G), where
A and B are (arbitrary) sets and G is a subset of the Cartesian product A×B.
The sets A and B are respectively called the domain and codomain of R, and G
is its graph. In order to simplify the notation, we identify a binary relation with
its graph, by considering a binary relation R with domain A and codomain B
simply as a subset of A×B. We say that an element x ∈ A is R-related to an
element y ∈ B if 〈x, y〉 ∈ R, written indifferently as xRy or R(x, y). For two
binary relations R and S with the same domain and codomain, their union
R∪S and intersection R∩S are given by the corresponding general operations
on sets. An important operation between two binary relations R ⊆ A×B and
S ⊆ B × C is the composition of S with R, defined as follows:

S ◦R := {〈x, z〉 | ∃y ∈ B such that 〈x, y〉 ∈ R and 〈y, z〉 ∈ S} . (2.5)

Note that, differently from union and intersection, the composition of two bi-
nary relations is not commutative, that is, in general S ◦R 6= R ◦ S.

A binary relation over a set A is a subset of A×A, that is, a set of ordered
pairs of elements of A. Some important classes of binary relations over a set A
are:

• reflexive: every element of A is R-related to itself;

• irreflexive (or strict): every element of A is not R-related to itself;

Chapter 2. Preliminaries 10

Property Condition (in FOL)

reflexivity ∀x ∈ A . R(x, x)
irreflexivity/strictness ∀x ∈ A . ¬R(x, x)
symmetry ∀x, y ∈ A . R(x, y)→ R(y, x)
antisymmetry ∀x, y ∈ A . R(x, y) ∧R(y, x)→ x = y
asymmetry ∀x, y ∈ A . R(x, y)→ ¬R(y, x)
transitivity ∀x, y, z ∈ A . R(x, y) ∧R(y, z)→ R(x, z)
totality ∀x, y ∈ A . R(x, y) ∨R(y, z)
trichotomy ∀x, y ∈ A . R(x, y)⊕R(y, x)⊕ x = y 1

Table 2.1: Most common properties of binary relations

• symmetric: if x is R-related to y, then also y is R-related to x;

• antisymmetric: if x and y are R-related to each other, then x = y;

• asymmetric: if x is R-related to y, then y is not R-related to x;

• transitive: if x is R-related to y and y is R-related to z, then x is R-related
to z;

• total : for each pair of elements x and y, we have that x is R-related to y
or vice versa (or both);

• trichotomous: for each pair of elements x and y, exactly one of xRy, yRx
or x = y holds.

The properties corresponding to the above classes of binary relations are sum-
marised in Table 2.1, along with the associated condition (expressed by a FOL
formula) that must be satisfied. Given a binary relation

Given a binary relation R over a set A, we call the smallest reflexive relation
over A containing R the reflexive closure of R, denoted by R=, while the largest
irreflexive relation over A contained in R is its reflexive reduction, written as
R 6=. The smallest transitive relation over A containing R is called the transitive
closure of R, denoted by R+, and the minimal relation over A having the same
transitive closure as R is its transitive reduction R−. Lastly, the relation (R+)=

is called the reflexive transitive closure of R and is denoted by R∗.
A reflexive, symmetric and transitive binary relation is called an equivalence

relation, while one that is reflexive, antisymmetric and transitive is a non-strict
(or weak, or reflexive) partial order, as opposed to a strict (or irreflexive) partial
order, which is irreflexive and transitive (thus also asymmetric). Strict partial
orders are of special interest because, as we shall see in the next section, they
are closely related to directed acyclic graphs. A non-/strict partial order that is
also total is called a non-/strict total (or linear) order. Table 2.2 shows which
properties are satisfied by partial and total orders in both of their strict and
non-strict flavours.

Given a binary relation R over a set A, the restriction of R to a set X ⊆ A
is defined as the set R|X of all pairs 〈x, y〉 ∈ R for which x, y ∈ S. If a binary
relation satisfies one (or more) of the properties in Table 2.1, then its restriction

1For two FOL formulas φ and ψ, we use φ⊕ψ as an abbreviation for (φ∨ψ)∧¬(φ∧ψ).

Chapter 2. Preliminaries 11

partial order total order

non-strict strict non-strict strict

reflexive X X
irreflexive X X

antisymmetric X X
asymmetric X X

transitive X X X X
total X X

trichotomous X

Table 2.2: Strict and non-strict partial/total orders

does too. Thus, the restriction of a partial (total) order is a partial (total) order
as well.

Note that for any strict binary relation there is a corresponding non-strict
one given by its reflexive closure and, similarly, for any non-strict binary rela-
tion there is a corresponding strict one given by its reflexive reduction. Hence,
it is irrelevant whether one works with strict or non-strict partial/total orders,
on condition of not mixing them. In what follows, the symbol “4” will usu-
ally indicate a weak partial order, while we will use “≺” if the partial order is
strict. Similarly, we will denote a strict total order using the symbol “<” and
a non-strict one using “6”.

Proposition 2.1 Let 6A and 6B be (possibly strict) total orders on sets A
and B, respectively, such that 6A ⊆ 6B. Then, x6A y if and only if x6B y,
for all x, y ∈ A ∩B.

Proof. The “only if” part holds trivially, since x6A y implies x6B y for every
x, y ∈ A, as 6A ⊆ 6B .

For the opposite direction, let x, y ∈ A ∩ B, assume x 6B y and suppose
x

A
y. Then, y6A x must hold, as 6A is a total order on A. Since 6A ⊆ 6B ,

we also have y6Bx, hence x = y by the antisymmetry of 6B . Therefore, as 6A

is reflexive, we obtain x6A y, in contradiction with our initial assumption.

The informal meaning of the following lemma is that there is exactly one
way to extend a totally ordered set by inserting a new element “immediately
after” any of the existing ones. Before stating the lemma, we define the relation
of immediate precedence, associated with a strict total order <, as follows:

l := {〈x, z〉 ∈ A | x < z and @y ∈ A such that x < y < z} . (2.6)

Lemma 2.1 Let <A be a strict total order on a set A, and let B = A∪{b} for
some b 6∈ A. Then, for each a ∈ A, there exists one and only one strict total
order <B on B such that alB b and <A ⊆ <B.

Proof. Take a ∈ A and let

<B := <A ∪ {〈x, b〉 | x = a or x <A a} ∪ {〈b, x〉 | a <A x} . (2.7)

Chapter 2. Preliminaries 12

By construction, <B is a binary relation on B containing <A. Moreover, it is
trivial to see that we have the following:

x <B b ⇐⇒ x = a or x <A a ; (2.8a)
b <B x ⇐⇒ a <A x ; (2.8b)
x <B y ⇐⇒ x <A y ; (2.8c)

for all x, y ∈ A. To prove that <B is a strict total order on B, we must show
that <B as in (2.7) is irreflexive, transitive and total.

Proving that <B is irreflexive means showing that for all x ∈ B it is never
the case that x<B x. This follows immediately from the irreflexivity of <A and
(2.8c), for the elements of A, and from the fact that 〈b, b〉 6∈ <B by construction.

Proving that <B is total means showing that any two elements of B are
comparable under <B . We distinguish the following cases.

Case 1. Let x, y ∈ A. Then, x and y are comparable under <A, which is total
on A. Hence, by using (2.8c), we get that x and y are also comparable
under <B .

Case 2. Let x ∈ A and y = b. If x = a, we have a <B b directly by (2.8a).
If x 6= a, by the totality of <A, it has to be comparable to a under
<A. Therefore, either by (2.8a) or (2.8b), we get that x and b are
comparable under <B .

Proving that <B is transitive means showing that for every x, y, z ∈ B
whenever x <B y and y <B z we also have x <B z. Since <B is irreflexive, we
can safely assume w.l.o.g. that x 6= y and y 6= z. We distinguish the following
cases.

Case 1. Let x = b and y, z ∈ A. Then, from b <B y we have a <A y by (2.8b)
and from y <B z we get y <A z by (2.8c). As <A is transitive, we
obtain a <A z and in turn b <B z, again by (2.8b).

Case 2. Let y = b and x, z ∈ A. Then, from b <B z we have a <A z by (2.8b)
and from x <B b we get that x = a or x <A a by (2.8a). Either way,
directly or by using the transitivity of <A, we obtain x <A z and in
turn x <B z by (2.8c).

Case 3. Let z = b and x, y ∈ A. Then, from x<B y we have x<A y by (2.8c)
and from y<B b we get that y = a or y<A a by (2.8a). In both cases,
either directly or by using the transitivity of <A, it follows that x<Aa
and in turn x <B b, again by (2.8a).

Case 4. Let x = z = b and y ∈ A. Then, from b <B y we have a <A y by
(2.8b) and from y <B b we get that y = a or y <A a by (2.8a). Either
case, directly or by using the transitivity of <A, we obtain a <A a,
which is a contradiction of the irreflexivity of <A. Therefore, b <B y
and y <B b cannot both be true at the same time.

This concludes the proof that <B is a strict total order.
We will now show that <B is such that a lB b. Suppose this is not the

case, i.e., there is some x ∈ B such that a <B x <B b. Then, from a <B x we

Chapter 2. Preliminaries 13

have a <A x by (2.8c) and from x <B b we get x = a or x <A a by (2.8a). In
both cases, either directly or by the transitivity of <A, it follows that a <A a,
which is a contradiction of the irreflexivity of <A.

So far, we have only proved that there exists a strict total order, namely
<B as in (2.7), including <A and such that alB b. To conclude our proof, we
still have to show that such order is unique. Suppose this is not the case, i.e.,
there exists a strict total order <′B 6= <B such that <A ⊆ <′B and al′B b. This
means that there are x, y ∈ B such that x <B y and y <′B x. We distinguish
the following cases.

Case 1. Let x, y ∈ A. Then, from x <B y we get x <A y by (2.8c) and in
turn, as <A ⊆ <′B , it follows that x <′B y, in contradiction of the
assumption that <′B is a strict total order.

Case 2. Let x = b and y ∈ A. Then, from b <B y we have a <A y by (2.8b)
and in turn it follows that a <′B y, as <A ⊆ <′B . Thus, we have
a <′B x <′B b, in contradiction of the assumption that al′B b.

Case 3. Let x ∈ A and y = b. Then, from x <B b we get that x = a or
x <A a by (2.8b). If x = a, we directly obtain b <′B a, which is a
contradiction of the assumption that a <′B b. If x <A a instead, we
have x<′B a as <A ⊆ <′B , and by the transitivity of <′B we reach the
same contradiction as before.

This concludes the proof of the lemma.

The previous lemma deals with the insertion of a new element into a strictly
and totally ordered set so that it “immediately follows” one of the elements in
the set. An analogous result can be proved in the case of adding a new element
“immediately before” one of the elements of a strictly and totally ordered set.
We will only state this lemma and omit its proof, as it is very similar to the
one already given for Lemma 2.1.

Lemma 2.2 Let <A be a strict total order on a set A, and let B = A∪{b} for
some b 6∈ A. Then, for each a ∈ A, there exists one and only one strict total
order <B on B such that blB a and <A ⊆ <B.

A function is a binary relation associating each element in the domain with
exactly one element of the codomain. The following two-part notation is used
specifically for functions:

f : A→ B , {x1 7→ y1, . . . , xk 7→ yk} (2.9)

where f is the function’s name, A = {x1, . . . , xk} its domain, B the codomain
and {x1 7→ y1, . . . , xk 7→ yk} is a set of mappings associating each element xi

of A with a corresponding yi ∈ B. In (2.9), the expression on the left is read
“f is a function from A to B”, while each mapping xi 7→ yi is read “xi maps
to yi”. A mapping can also be written as yi = f(xi) and yi is called the image
of xi under f . The concept of image can be extended to subsets of the domain
by defining the image of X ⊆ A as the following subset of the codomain:

f(X) := {y ∈ B | y = f(x) and x ∈ X} (2.10)

If X = A, the set f(A) is called the image of f and denoted by im(f).

Chapter 2. Preliminaries 14

The notation in (2.9), where the mapping of each element of the domain is
given explicitly, cannot be used in the case in which the domain is not finite.
Thus, we introduce the following more general notation:

f : A→ B , x 7→

expression in x if condition on x

...
...

expression in x if condition on x

(2.11)

where the conditions on x are mutually exclusive (i.e., not conflicting with each
other) and such that every element of the domain satisfies exactly one of them.
Moreover, each expression in x results in an element of the codomain. The
intuitive meaning is that an element of the domain is mapped to an element of
the codomain resulting from the evaluation of the expression corresponding to
the satisfied condition. Clearly, in the case in which the domain is finite, (2.9)
can be equivalently expressed using (2.11) as follows:

f : A→ B , x 7→

y1 if x = x1

...
...

yk if x = xk

The composition of functions and the restriction of a function are defined
as for binary relations in general. The unique function over a set A that maps
each element to itself is called the identity function for A and it is denoted by
idA. As each set has its own identity function, the subscript cannot be omitted
unless the set can be inferred from the context.

We conclude the section by giving some other useful definitions that will be
used later on and which also provide an example of the notation we introduced
for functions in (2.11).

Definition 2.1 Let C be a set, op a binary operation between sets, and let f
and g be functions such that codom(f) = codom(g) = 2C . Then, we define:

f ôp g : dom(f) ∪ dom(g)→ 2C

x 7→

f(x) x ∈ dom(f) \ dom(g) ,

f(x) op g(x) x ∈ dom(f) ∩ dom(g) ,
g(x) otherwise .

(2.12)

Definition 2.2 Let A, B and C be sets such that A ∩ B = ∅. The disjoint
union of functions f : A→ C and g : B → C is defined as follows:

f ∪̇ g : A ∪B → C

x 7→

{
f(x) x ∈ A ,

g(x) otherwise .

(2.13)

2.3 Graphs and Trees

As we shall see in the next chapter, trees are the fundamental structure used
for representing queries in the Query Tool framework. Here, we first give some

Chapter 2. Preliminaries 15

basic definitions about graphs in general, following mainly [8]. Then, we will
introduce a specific notation for trees, adapted to our needs.

A directed graph is a pair G = (V,E) of disjoint sets satisfying E ⊆ V × V ,
thus the elements of E, called edges (or arcs), are ordered pairs of the elements
of V , which are the nodes (or vertices) of G. An edge e = 〈u, v〉 is said to be
directed from the initial node u to the terminal node v, denoted by init(e) and
ter(e), respectively. If init(e) = ter(e), the edge e is called a loop.

The number of nodes in a graph G is its order, written as |G|, and graphs
are finite or infinite according to their order. The graph with no nodes (and,
therefore, no edges) is the empty graph, and a graph of order 0 or 1 is called
trivial.

A node n is incident with an edge e if n = init(e) or n = ter(e); then e
is an edge at n. The initial node of an edge is a parent of the terminal one,
which is its child, and an edge is incoming (outgoing) w.r.t. its terminal (initial)
node. The sets of incoming and outgoing edges of a node n in a graph G are
respectively defined as follows:

Ein,G(n) := {e ∈ E(G) | ter(e) = n} ; (2.14)
Eout,G(n) := {e ∈ E(G) | init(e) = n} . (2.15)

The set of all the edges in E(G) at a node n is given by Ein,G(n) ∪ Eout,G(n)
and denoted by EG(n), or briefly by E(n).2

Given graphs G = (V,E) and H = (U,F), we define their union and
intersection, respectively, as follows:

G ∪H := (V ∪ U,E ∪ F) ; G ∩H := (V ∩ U,E ∩ F) .

If U ⊆ V and F ⊆ E, then H is a subgraph of G, written as H ⊆ G. When
G∩H is the empty graph, G and H are disjoint. The graph resulting from the
union of disjoint graphs is called their disjoint union.

A path is a non-empty graph P = (V,E) of the form

V = {x0, x1, . . . , xk} , E = {〈x0, x1〉, 〈x1, x2〉, . . . , 〈xk−1, xk〉} ;

where x0, . . . , xk−1 and x1, . . . , xk are sequences of distinct elements (i.e., only
x0 and xk are allowed to be the same node). We say that P is a path from x0 to
xk and refer to it by the natural sequence of its nodes, writing P = x0x1 . . . xk.
The nodes x0 and xk are respectively called the start and the end of P , while
x1, . . . , xk−1 are its inner nodes. In the particular case when x0 and xk coincide,
we call P a cycle (or cyclic path). The number of edges in a path is its length:
note that a node is a path of length 0 and a loop is a cycle of length 1. In what
follows, when we speak of a path, we always refer to a “proper” path, i.e. a
path of length greater than or equal to 1.

A node n is an ancestor of order k (or k-ancestor for short) of a node m,
which is called a k-descendant of n, if there is a path of length k from n to
m. Note that the 1-ancestors of a node are its parents and the 1-descendants
are its children. We say that n is an ancestor (descendant) of m if n is a k-
ancestor (k-descendant) of m, for some k ∈ N1. The sets of k-ancestors and

2Here, as elsewhere, we omit the subscript referring to the underlying graph if the refer-
ence is clear.

Chapter 2. Preliminaries 16

k-descendants of a node n in a graph G are denoted by V k
anc,G(n) and V k

des,G(n),
respectively. Then, the sets of all ancestors and descendants of a node n in a
graph G are given by

Vanc,G :=
⋃

k∈N1

V k
anc,G ; (2.16)

Vdes,G :=
⋃

k∈N1

V k
des,G . (2.17)

A directed acyclic graph (DAG) is directed graph without cycles. Each DAG
induces a strict partial order ≺ on its nodes, where u ≺ v exactly when there
exists a path from u to v. Such strict partial order is the reachability relation
of the DAG, telling whether (and how) it is possible to get from one node to
another, and corresponds to the transitive closure of its edge set. Note that
different DAGs may give rise to the same strict partial order: for example,
G = ({a, b, c} , {〈a, b〉, 〈b, c〉}) and G′ = G + 〈a, c〉 have the same reachability,
but G′ has an additional edge. Among all such DAGs, the one with the fewest
edges is the transitive reduction of each of them, while the one with the most
is their transitive closure. In particular, the transitive closure has an edge
〈u, v〉 for every related pair u ≺ v in the reachability relation ≺, which it may
therefore be identified with.

A tree is DAG in which a special node, called the root, has no incoming
edge and every other node has exactly one parent. In a tree, a node with no
children is called a leaf. It is easy to see that, in a tree T with root r, for each
node n 6= r there exists a unique path from the r to n, hence the root is an
ancestor of every other node in the tree. The unique path from the root to a
node n is denoted by PT (n) and its length is the depth of n, denoted by d(n).
The depth of a tree T is the maximum among the depths of its nodes, that is,
d(T) := max({d(n) | n ∈ V (T)}. Clearly, the depth of the root is 0 and each
node n is a d(n)-descendant of the root, which is an ancestor of every other
node in the tree.

The tree-order of a tree T rooted in r is the partial order induced on V (T)
associated with T and r. Note that r is the least element in this partial order,
every leaf x 6= r of T is a maximal element, the ends of any edge of T are
comparable, and every set of the form {x | x ≺ y} (where y is any fixed node)
is a chain, a set of pairwise comparable elements.

Proposition 2.2 Let T = (V,E) and S = (U,F) be directed trees rooted in t
and s, respectively. If V ∩ U = {s}, then the graph T ∪ S = (V ∪ U,E ∪ F) is
a tree rooted in t.

Proof. In order to prove that G = T ∪S is a tree rooted in t, it suffices to show
that for every node n ∈ V (G)\{t} there exists a unique path leading from t to
n. If n ∈ V , then such unique path exists by assumption, as T is a tree. Let
us now consider the case in which n ∈ U . If n = s we are again in the previous
case, so let n 6= s. By assumption, there is a unique path PT from t to s in T
and a unique path PS from s to n in S. Since both PT and PS are also paths
in G, by joining them we obtain a path P from t to n. As the only common
node between T and S is s, there can be no path from t to n in G not going
through s, therefore P is unique in G.

Chapter 2. Preliminaries 17

2.4 Description Logics

Description Logics (DL) are a well-known family of knowledge representation
languages that can be used to represent an application domain in a structured
and formally well-understood way.

The DL syntax can be given using an abstract language, similar to other
logical formalisms, where two disjoint alphabets of symbols are used to denote
atomic concepts and atomic roles, designated by unary and binary predicate
symbols, respectively. In particular, the latter are used to express relationships
between concepts and terms are then built from the basic symbols using several
kinds of constructors. Some common concept constructors include intersection
(or conjunction) of concepts, union (or disjunction) of concepts, negation (or
complement) of concepts, value restriction (universal quantification), existen-
tial quantification, to name the most commonly used ones. Other constructors
may also include restrictions on roles which are usual for binary relations, such
as inverse, transitivity, functionality, among others.

As for the DL semantics, this is given using a set-theoretic interpretation: a
concept is interpreted as a set of individuals and a role is interpreted as a set of
pairs of individuals. The domain of interpretation can be chosen arbitrarily and
can be infinite. Atomic concepts are interpreted as subsets of the interpretation
domain, while the semantics of the other constructs is then specified by defining
the set of individuals denoted by each construct.

The basic DL language is the Attributive Language AL, whose syntax is
defined by the following grammar:

C,D → ¬A | C uD | ∀R.C | ∃R ;

in which C and D are (general) concepts, R is an atomic role and A denotes an
atomic concept. Thus, AL is the language allowing for atomic negation (i.e.,
negation only in front of atomic concepts), concept intersection, value restric-
tion and limited existential quantification, in which concepts are constructed
according to the following:

〈concept〉 ::= ¬〈atomic-concept〉 | 〈concept〉 u 〈concept〉 |
∀〈atomic-role〉.〈concept〉 | ∃〈atomic-role〉 .

There is a naming convention that indicates which operators are allowed in
each of the many different varieties of DL. In particular, the expressivity of a
DL language3 is encoded in its name using the following letters:

F functional properties;

E full existential qualification (i.e., existential restrictions with fillers other
than >);

U concept union;

C complex concept negation;

S an abbreviation for ALC with transitive roles;

3Apart from a few exceptions like AL, FL− and EL, which do not fit in this naming
scheme.

Chapter 2. Preliminaries 18

H role hierarchy (i.e., subproperties);

R limited complex role inclusion axioms; reflexivity and irreflexivity; role
disjointness.

O nominals (i.e., enumerated classes of object value restrictions);

I inverse properties;

N cardinality restrictions;

Q qualified cardinality restrictions (i.e., cardinality restrictions with fillers
other >);

(D) use of datatype properties, data values or data types.

As an example of the above naming scheme, ALC is the DL language obtained
from AL by allowing negation in front of any concept (not just atomic ones).

The ontology language adopted by the Query Tool is OWL 2, which is
expressive enough for our purposes, and for which there are state of the art
reasoners. OWL 2 has the expressiveness of the DL language SROIQD, though
we did not fully exploit it. In the rest of this section, we will describe the
syntax and semantics of SROIQ. Our presentation is based on [17], where
this language was first introduced. A SROIQ knowledge base is a triple
K = (T ,R,A), where T is a terminological box (Tbox) of statements about
concepts, R is a role box (Rbox) of statements about roles and A is an assertion
box (Abox) of assertions about individuals. In what follows, we analyse each
component in detail.

Let C be a set of concept names including a subset N of nominals, R a set of
role names and I = {a, b, c, . . .} a set of individual names. A role is an element
of the set R∪{R− |R ∈ R}, where a role R− is called the inverse role of R. An
interpretation I = (∆I , ·I) consists of a non-empty (possibly infinite) set ∆I ,
called the domain of I, and a valuation ·I associating each role name R ∈ R
with a binary relation RI ⊆ ∆I ×∆I , each concept name C ∈ C with a subset
CI ⊆ ∆I , where CI contains exactly one element if C ∈ N, and each individual
name a ∈ I with an element aI ∈ ∆I . Inverse roles are interpreted as follows:

(R−)I =
{
〈x, y〉 | 〈y, x〉 ∈ RI

}
.

In order to avoid considering roles of the form R−−, we define a function Inv
on roles such that Inv(R) = R− if R is a role name, and Inv(R) = S ∈ R if
R = S−. An expression of the form w = R1 . . . Rn is a string of roles, for which
we set Inv(w) = Inv(R1) . . . Inv(Rn) and wI = RI1 ◦ · · · ◦ RIn, where ◦ denotes
composition of binary relations.

A (generalised) role inclusion axiom (RIA) is an expression of the form w v
R, where w is a finite string of roles and R ∈ R. A role hierarchy is a finite set of
RIAs. An interpretation I satisfies a RIA w v R (written I |= w v R) if wI ⊆
RI , and it is a model of a role hierarchy Rh (in symbols I |= Rh) if it satisfies
all RIAs in it. Given a role hierarchy Rh, the relation v∗ denotes the reflexive-
transitive closure of v over the set {R v S, Inv(R) v Inv(S) |R v S ∈ Rh}.

For role names R and S, a role assertion is one of the following expressions:

Ref(R), Irr(R), Sym(R), Asy(R), Tra(R), Dis(R,S) ,

Chapter 2. Preliminaries 19

stating that R has to be interpreted, respectively, as reflexive, irreflexive, sym-
metric, asymmetric and transitive, and that R and S are disjoint. For each
interpretation I and all x, y, z ∈ ∆I , we have:

I |= Ref(R) if
{
〈x, x〉 | x ∈ ∆I

}
⊆ RI ;

I |= Irr(R) if
{
〈x, x〉 | x ∈ ∆I

}
∩RI = ∅ ;

I |= Sym(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI ;

I |= Asy(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 6∈ RI ;

I |= Tra(R) if 〈x, y〉 ∈ RI and 〈y, x〉 ∈ RI implies 〈x, z〉 ∈ RI ;

I |= Dis(R,S) if RI ∩ SI = ∅ .

Transitive and symmetric role assertions can be replaced by complex role in-
clusion axioms. In particular, Tra(R) is equivalent to RR v R and Sym(R) is
equivalent to R− v R.

A role is simple if it is the inverse of a simple role or it occurs only in the
RHS of RIAs whose LHS is a simple role (thus, role names not occurring in
the RHS of any RIA are simple). Intuitively, non-simple roles are those that
are implied by the composition of roles.

A SROIQ-Rbox is a set R = Rh ∪ Ra, where Rh is a regular4 role hier-
archy and Ra is a finite set of role assertions about simple roles only. An
interpretation I is a model of R (written I |= R) if I |= Rh and I |= φ for all
role assertions φ ∈ Ra.

The SROIQ-concepts are constructed according to the following grammar:

C,D → > | ⊥ | A | ¬C | C uD | C tD | ∀R.C | ∃R.C |
∃S. Self | (> n S.C) | (6 n S.C)

(2.18)

where C and D are concepts, A is a concept name, R is a role, S is a simple role
and n is a non-negative integer. As for the semantics, for each interpretation
I, the extension of complex concepts is defined as follows:

>I = ∆I ;

⊥I = ∅ ;

(¬C)I = ∆I \ CI ;

(C uD)I = CI ∩DI ;

(C tD)I = CI ∪DI ;

(∃R.C)I =
{
x | there is y ∈ CI such that 〈x, y〉 ∈ RI

}
;

(∃R.Self)I =
{
x | 〈x, x〉 ∈ RI

}
;

(∀R.C)I =
{
x | y ∈ CI for all 〈x, y〉 ∈ RI

}
;

(> n R.C)I =
{
x |#

{
y ∈ CI | 〈x, y〉 ∈ RI

}
≥ n

}
;

(6 n R.C)I =
{
x |#

{
y ∈ CI | 〈x, y〉 ∈ RI

}
≤ n

}
;

4Regularity is a requirement that prevents a role hierarchy from containing cyclic de-
pendencies, which are known to cause undecidability, and whose definition involves a certain
ordering on roles. See [17] for the details.

Chapter 2. Preliminaries 20

where #M denotes the number of elements in a set M .
A general concept inclusion axiom (GCI) is an expression of the form C v

D for two SROIQ-concepts C and D; a SROIQ-Tbox is a finite set T of
GCIs. An interpretation I is a model of a Tbox T (written (I |= T) if CI ⊆
DI for each GCI C v D in T . A concept C is satisfiable if there exists an
interpretation I such that CI 6= ∅. For an interpretation I, an element x ∈ ∆I

is an instance of a concept C if x ∈ CI .
An individual assertion is one of the following expressions:

a : C, (a, b) : R, (a, b) : ¬R, a 6= b ;

where a, b ∈ I are individuals, R is a role and C is a concept. A SROIQ-Abox
is a finite set A of individual assertions. An interpretation I is a model of an
Abox A (written I |= A) if I |= φ for all individual assertions φ ∈ A, where
we have:

I |= a : C if aI ⊆ CI ;

I |= (a, b) : R if 〈aI , bI〉 ∈ RI ;

I |= (a, b) : ¬R if 〈aI , bI〉 6∈ RI ;

I |= a 6= b if aI 6= bI .

An Abox A is consistent w.r.t. a Tbox T and an Rbox R if there is a model I
for T and R such that I |= A.

In a knowledge base K, a concept D subsumes a concept C (written K |=
C v D) if CI ⊆ DI in every interpretation I. Two concepts C and D are
equivalent in K (in symbols K |= C ≡ D) if K |= C v D and K |= D v C. For
atomic concepts A and B, we say that B is a direct super-concept of A, which
is then a direct sub-concept of B, if K 6|= A ≡ B, K |= A v B and there is no
C ∈ C subsuming A and subsumed by B.

CHAPTER 3
Theoretical Foundations

In this chapter, we formally define the Query Tool and its functional API, using
the mathematical tools we previously introduced in Chapter 2. Since the most
direct and perhaps most effective way to understand the overall meaning of a
new notion is often by means of examples, the vast majority of the definitions we
will give is accompanied by a supporting example. Therefore, before presenting
any formal definition, we first introduce a simple ontology on which all of the
examples in this chapter are based.

We consider a SROIQ ontology K =
(
T ,R,∅

)
, with an empty Abox (i.e.,

no individual assertions), over the following sets C of concept names, R of role
names and I of individual names:

C = {Beautiful,Ugly,House,Person,Man,Woman,RichPerson,SinglePerson}
R = {inhabitedBy, ownedBy, owns, livesIn,marriedTo} ; and
I = ∅ ;

where T consists of the following GCIs:

UglyuBeautiful v ⊥ HouseuPerson v ⊥
Man v Person Woman v Person

RichPerson v Person SinglePerson v Person

∃marriedTo .> v Person ∃marriedTo− .> v Person

∃ owns .> v Person ∃ owns− .> v House

∃ livesIn .> v Person ∃ livesIn− .> v House

Man v ∀marriedTo .Woman Woman v ∀marriedTo .Man

Person v (6 1 marriedTo .Person) Person v (6 1 livesIn .House)
Man ≡ Personu¬Woman 1 RichPerson v ∃ owns .House

SinglePerson ≡ Personu¬(∃marriedTo .Person)
RichPerson v ∀ livesIn .(HouseuBeautiful) ;

21

Chapter 3. Theoretical Foundations 22

and R = (Rh,Ra), with:

Rh = {inhabitedBy ≡ livesIn−, ownedBy ≡ owns−} ;
Ra = {Sym (marriedTo)} .

Informally, the given ontology expresses the following information: nothing
can be both a house and a person, nor can it be ugly and beautiful at the
same time, although there might be, for example, beautiful persons and ugly
houses, as well as beautiful things that are neither houses nor persons, and so
on. A man is a person and so is a woman, and a person is either a man or
a woman.2 Persons (and only persons) can be married and, in that case, they
are married to at most another person. However, men can only be married
to women and vice versa. Furthermore, as the role marriedTo is asserted to be
symmetric, if person A is married to person B, then B is married to A. Some
persons are rich and some are single, and the latter are those who are not
married to anyone. Persons live in houses they may own, but a person can
live in at most one house. However, a house might be inhabited by more than
one person. If a person owns a house, then the latter is owned by that person.
Rich persons always own (at least) one house and they live in a beautiful house
(which may be different from the one they own).

Suppose we want to formulate the following conjunctive query over the set
of unary (concept names) and binary predicates (role names) of our sample
ontology:

Q(x)←SinglePerson(x),Man(x),marriedTo(x, y),Woman(y)
owns(x,w),Beautiful(w),House(w)

inhabitedBy(w, z),RichPerson(z) .

(3.1)

It should be immediately clear, from the constraints in the ontology, that the
above query is not satisfiable, since a single person is one who is not married. In
what follows, we will show how such a query might in principle be represented
in the framework we are about to introduce, but it cannot indeed be formulated
using the operations in the Query Tool’s functional API.

3.1 Formal Definition of the Framework

We represent a conjunctive query without co-references as a directed labelled
tree, where each node is associated with a non-empty set of concept names and
each edge is associated with exactly one role name.

Definition 3.1 (Query) Let N be a countable set of node names, C a finite
set of concept names and R a finite set of role names, and let N, C and R be
pairwise disjoint. A query Q is a quintuple 〈V ,E, o,V , E 〉 where:

• (V,E) is a directed tree rooted in o ∈ V , in which V ⊆ N is the set of
nodes and E ⊆ V × V is the set of (directed) edges;

1With some abuse of notation we write C ≡ D as an abbreviation for the two GCIs
C v D and D v C. We use a similar shortcut also for RIAs.

2This follows from the fact that a man is exactly a person who is not a woman.

Chapter 3. Theoretical Foundations 23

• V : V −→
(
2C \ {∅}

)
∪{{>}} is a total function, called node-labelling func-

tion, which associates each node with a non-empty set of concept names
(including the singleton {>}); and

• E : E −→ R is a total function, called edge-labelling function, associating
each edge with a role name.

A query is atomic query if V = {o}, E = ∅ and |V(o)| = 1.

As with graphs and trees in general, we refer to the node set of a query Q as
V (Q) and to its edge set as E(Q), independently of the actual name of the two
sets. We also assume that, unless explicitly stated otherwise, the remaining
components of a query (i.e., its root, its node-labelling function and its edge-
labelling function) are identified using the name of the query as subscript. For
instance, for queries Q and R, we refer to the roots of Q and R as oQ and oR,
respectively; similarly, their respective edge-labelling functions are indicated
with EQ and ER, and so on.

Not surprisingly, since a query is a directed labelled tree, a subquery is a
directed labelled subtree, where the set of labels associated with each node is
a subset of the labels associated with that node in the original tree. As for the
edge labels, each edge in the subtree is obviously labelled by the only label it
is associated with in the original tree. The query in (3.1) can be represented
as in Figure 3.1a, while Figure 3.1b shows an example of subquery.

Definition 3.2 (Subquery) Given queries S and Q, we say that S is a subquery
of Q, and write S ⊆ Q, if all of the following conditions hold:

V (S) ⊆ V (Q) ; (3.2a)
E(S) ⊆ E(Q) ; (3.2b)
∀n ∈ V (S), VS(n) ⊆ VQ(n) ; (3.2c)
∀e ∈ E(S), ES(e) = EQ(e) . (3.2d)

We say that S is a complete subquery of Q (in symbols S j Q) if in addition
it also holds that:

∀n ∈ V (S), VS(n) ⊇ VQ(n) ; (3.2e)

and

∀n ∈ V (Q), n ∈ Vdes,Q(oS) =⇒ n ∈ V (S) . (3.2f)

Figure 3.1a shows how the conjunctive query expressed by (3.1) is repres-
ented as a directed labelled tree according to Definition 3.1. However, let us
stress once more the fact that such a query, being unsatisfiable, cannot be for-
mulated using the operations in the Query Tool’s functional API, which will
be introduced in the next section. An example of subquery for the above query
is shown in Figure 3.1b.

A selection within a query Q is a subquery of Q, which is called simple if
it is complete or consists of a single node labelled by either one, in which case
we speak of an atomic selection, or all the labels associated with that node in
Q.

Chapter 3. Theoretical Foundations 24

x

y

marriedTo

w

z

inhabitedBy

owns

{SinglePerson,Man}

{Woman}
{Beautiful,House}

{RichPerson}

(a) A query Q

w

z

inhabitedBy

{House}

{RichPerson}

(b) A subquery S of Q

Figure 3.1: Examples of query and subquery

Definition 3.3 (Selection) A selection within a query Q is a subquery S of
Q. A selection S within a query Q is simple if one of the following holds:

E(S) = ∅ and |VS(oS)| = 1 < |VQ(oS)| ; (3.3a)
E(S) = ∅ and VS(oS) = VQ(oS) ; (3.3b)
S j Q . (3.3c)

A (simple) selection satisfying (3.3a) is called atomic.

Every selection S within a query Q partitions the nodes of Q into selected,
which belong to V (S), and unselected, belonging to V (Q) \V (S). The selected
nodes can be further partitioned into totally selected, having all of their labels
selected, and partially selected, which have some, but not all, of their labels
selected. In symbols, the former are the elements of

Vts =
{
n ∈ V (S) |

∣∣VS(n)
∣∣ =

∣∣VQ(n)
∣∣} , (3.4)

while the latter constitute the set

Vps =
{
n ∈ V (S) |

∣∣VS(n)
∣∣ < ∣∣VQ(n)

∣∣} . (3.5)

From the graphical point of view, we will use special notation for specifying
a selection, consisting in underlining the selected concept names directly within
the query. As an example, the selection of Figure 3.1b is represented within the
query of Figure 3.1a as shown in Figure 3.2. For the sake of clarity, the selected
nodes are drawn using a double circle, although this information is redundant
and not strictly necessary, because selected nodes are already identified as those
having some of their associated concept names underlined .

Figure 3.3 shows the different types of simple selection within the sample
query of Figure 3.1a: atomic when the selection is an atomic query, single-node
when it consists of a single node along with all of the concept names associated
with that node in the original query, and complete when it consists of a node
and all of its descendants along with all of the concept names associated with
each of those nodes in the original query. Any combination of the three types
of simple selection is possible and, in particular, the selection consisting of a
leaf node associated with a single concept name in the original query is atomic,
single-node and complete at the same time. Note that, in general, a single-node

Chapter 3. Theoretical Foundations 25

x

y

marriedTo

w

z

inhabitedBy

owns

{SinglePerson,Man}

{Woman}
{Beautiful,House}

{RichPerson}

Figure 3.2: Graphical notation for selections

selection is also complete if the node is a leaf1 and it is atomic if the node is
associated1 with one concept name only.

w {House}

(a) Atomic selection

w {Beautiful,House}

(b) Single-node selection

w

z

inhabitedBy

{Beautiful,House}

{RichPerson}

(c) Complete selection

Figure 3.3: Different types of simple selection

So far the word “label” has been generically used for indicating concept and
role names associated with nodes and edges in a query. However, as a concept
(role) name can be associated with more than one node (edge) in the same
query, we need to be more precise and always refer to a label together with the
node or edge it is associated with. This leads us to the following definition.

Definition 3.4 (Label) Given a query Q, a label is a pair 〈x, y〉 in which either
x ∈ V (Q) and y ∈ V(x), or x ∈ E(Q) and y = E(x). In the former case we
speak of a node label, in the latter of an edge label. The set of node and edge
labels occurring in Q is defined as follows:

labels(Q) := {〈n, c〉 | n ∈ V (Q), c ∈ V(n)}∪
{〈e, r〉 | e ∈ E(Q), r = E(e)} .

(3.6)

Moreover, the set of labels of a node n is given by

labels(n) := {〈n, c〉 | c ∈ V(n)} . (3.7)

Occasionally, we might still refer to a concept (role) name associated with
a node (edge) simply as a “label”, but only when there is no risk of ambiguity.

The result of deleting the selected node labels from a query is clearly some-
thing “weaker” than the original, but it might not be a query. In particular,
special care is needed for totally selected nodes, because if we simply deleted
all of their labels they would end up having an empty set of labels, which is

1In the original query.

Chapter 3. Theoretical Foundations 26

x

y

marriedTo

w

z

inhabitedBy

owns

{RichPerson,Man}

{Woman}
{Beautiful,House}

{SinglePerson}

(a)

x

y

marriedTo

w

z

inhabitedBy

owns

{Man}

{>} {>}

{SinglePerson}

(b)

Figure 3.4: (a) A selection within a query, and (b) the result of weakening.

not allowed according to the definition of query. In order to ensure that the
result will be a query, each totally selected node is then associated with > as
its only label. The deletion of the selected node labels from a query, oppor-
tunely replacing the set of labels of totally selected nodes with the singleton
{>}, is called “weakening” w.r.t. a selection. A graphical example is shown in
Figure 3.4, while the formal definition is given below.

Definition 3.5 (Weakening) Given a selection S within a query Q, the weak-
ening of Q w.r.t. S is the query Q 	 S obtained from Q by replacing its
node-labelling function by:

V :=
(

id ◦
(
VQ \̂ VS

))
[∅ / {>}] . (3.8)

Nodes having only > as their label are called >-nodes.

Another useful operation is that of putting together two queries to create
a new one. In general, the naive union of two queries is not a query, as their
node sets may be disjoint or the interaction between their edges may give rise
to undesired cycles. Therefore, we restrict the way of combining two queries
to the simpler case of “appending” one query to a node of the other, in which
the only requirement is that the two queries in question must have only one
node in common, namely the root of the appended query. By Proposition 2.2,
this condition is sufficient to ensure that the result of their union is a query.
For the sake of continuing our botanic metaphor about trees, we will call the
described operation “grafting” rather than “appending”. An example is shown
in Figure 3.5.

Definition 3.6 (Grafting) Given queries Q and R s.t. V (Q) ∩ V (R) = {oR},
where oR is the root of R, the graft of R onto Q is the query QdR defined as
follows:

〈V (Q) ∪ V (R), E(Q) ∪ E(R), oQ, VQ ∪̂ VR, EQ ∪̇ ER〉 . (3.9)

A query can be represented in linear form as a sequence of labels, which
is meant to provide the basis for a representation in natural language. In
this respect, however, there are some constraints that a linearised query has to
satisfy, thus only certain sequences of labels are admissible as a linear form of a
query. In particular, in a linearised query, every edge label (that is, a property)

Chapter 3. Theoretical Foundations 27

x

y

marriedTo

{Man}

{Woman}

(a) A query Q

x

w

owns

{SinglePerson}

{House}

(b) A query R

x

y

marriedTo

w

owns

{Man,SinglePerson}

{Woman} {House}

(c) The result of Q dR

Figure 3.5: Example of grafting

must always be preceded by all the labels of its start node and “immediately”
followed by at least one of the labels of its end node. Roughly, this means
that a property cannot be mentioned before mentioning its subject and after
mentioning its object. There is an additional requirement that the linear form
of a query must satisfy, stating that all the labels describing a node cannot be
mixed up with labels not referring to the same node. We may call this last
constraint the “no change of subject” condition. We will now formally define
the notion of “linearisation” of a query and then further clarify the meaning of
each constraint we impose.

Definition 3.7 (Linearisation) A linearisation of a query Q is a strict total
order C on labels(Q) s.t., for each edge e ∈ E(Q), both of the following condi-
tions hold:

∀l ∈ labels(init(e)), l C 〈e, E(e)〉 ; (3.10a)
∃l ∈ labels(ter(e)), 〈e, E(e)〉 J l ; (3.10b)

and, for each node n ∈ V (Q), it is the case that:

∀l1, l2 ∈ labels(n), l1 C l C l2 =⇒ l ∈ labels(n) . (3.10c)

Moreover, we say that l1 ∈ labels(Q) immediately precedes l2 ∈ labels(Q), and
write l1 J l2, if l1 C l2 and there is no l ∈ labels(Q) such that l1 C l C l2. In
this case we also say that l2 immediately follows l1. Note that C = J+, where
the symbol “+” denotes transitive closure.

The first two conditions in Definition 3.7, that a strict total order must
satisfy to fully qualify as a linearisation, informally say that “the label of every
edge is preceded by all the labels of its start node and followed by at least
one of the labels of its end node”. The third condition states that “between
any two labels of a node there can only be (distinct) labels of the same node”.
Note that in general, without further restrictions, a query admits more than
one linearisation. For example, two of the several possible linearisations of the
query in Figure 3.1a are given by:

〈x, SinglePerson〉 C1 〈x,Man〉 C1 〈〈x, y〉,marriedTo〉 C1 〈y,Woman〉
C1 〈〈x,w〉, owns〉 C1 〈x,Beautiful〉 C1 〈x,House〉

C1 〈〈w, z〉, inhabitedBy〉 C1 〈z,RichPerson〉

Chapter 3. Theoretical Foundations 28

and

〈x,SinglePerson〉 C2 〈x,Man〉 C2 〈〈x, y〉,marriedTo〉 C2 〈y,Woman〉
C2 〈〈w, z〉, inhabitedBy〉 C2 〈z,RichPerson〉

C2 〈〈x,w〉, owns〉 C2 〈x,Beautiful〉 C2 〈x,House〉 .

A query can be modified in a number of (predefined) ways, some of which
involve the presence of a selection. With respect to query manipulation, an-
other important notion is that of sticky edges, which are edges that can only
be deleted explicitly (that is, when performing a delete operation), but never
implicitly (e.g., as the consequence of a substitute operation). The meaning
and importance of sticky edges will become more clear in the next section,
where we introduce and describe the two operations delete and substitute. For
the moment, sticky edges can be simply understood as immutable (to some
extent) pieces of information within a query, which are not modified as a “side
effect” of an operation not directly intended to do so.

In order to keep track of which node and edge labels are selected within a
query and which should be prevented from being modified, we give the following
definition:

Definition 3.8 (State) A state is a triple 〈Q,S, Ẽ〉 in which Q is a query, S
is either ε or a selection within Q, and Ẽ ⊆ E(Q). The symbol “ε” denotes
absence of selection.

Absence of selection has not be interpreted as “emptiness”. In fact, since
a selection is a (sub)query, by definition it always contains at least one node,
namely the root, therefore the notion of empty selection does not exist in our
framework.

3.2 Functional API

In this section, we will present the Query Tool’s functional API, describing the
available operations for the formulation of a query and its refinement. These
operations are backed up by reasoning services running over the ontology, that
are responsible of ruling out all the redundant and contradictory information
with respect to the current query, in order to provide the user with relevant
and contextual choices only.

To draw the inferences that are at the basis of the query formulation tasks,
we express a query into a concept of some DL language L, for which a reasoner is
available. In the following, we assume the existence of an underlying knowledge
base K in such a DL language L over C and R, and we define a function roll-up
that, given a query as input, returns its translation into a concept in L.

Definition 3.9 (roll-up) Given a query Q and a node n ∈ V (Q), the opera-
tion roll-up(Q,n) encodes Q into a DL concept in L w.r.t. n. The operation
roll-up(Q,n) is defined as encode(Q,n, n), where encode is the recursive pro-
cedure described in Algorithm 3.1. We use roll-up(Q) as an abbreviation for
roll-up(Q, o), where o is the root of Q.

The roll-up operation performs a complete visit of the underlying tree of a
query Q, starting from a node n and using the encode procedure as follows:

Chapter 3. Theoretical Foundations 29

Algorithm 3.1 Calculate encode(Q,n,m)
Input: a query Q and two nodes n,m ∈ V (Q)
Output: a concept C expressing Q in the DL language L

1: C ← c, for some c ∈ V(n)
2: for all x ∈ V(n) such that x 6= c do
3: C ← C u x
4: end for
5: for all x ∈ V 1

des,Q(n) such that x 6= m do
6: R← E(〈n, x〉)
7: C ← C u ∃R . encode(Q, x, n)
8: end for
9: if n 6= o then

10: Let p ∈ V 1
anc,Q(n)

11: if p 6= m then
12: R← E(〈p, n〉)
13: C ← C u ∃R− . encode(Q, p, n)
14: end if
15: end if
16: return C

1. process each node in the complete subquery of Q rooted in n;

2. process the subqueries rooted in each of the nodes in the inverse path from
n to the root of Q, skipping those which have already been processed.

We will now comment and explain in detail the pseudocode of Algorithm 3.1.
The first line of the procedure simply initialises the return value C to a concept
name c chosen among those associated with node n. In lines 2–4, all of the other
concept names in V(n) are then intersected with C, resulting in the following
conjunction:

C =
l

c∈V(n)

c . (3.11)

For each child x of n, the second loop in lines 5–8 adds to the concept expression
in (3.11) an additional conjunct of the form ∃R.D, where R is the role name
associated with the edge going from n to x and D is the recursive encoding of
the subquery of Q rooted in x. The reason why only the children of n which
are distinct from m are taken into consideration at this point will become clear
soon. In lines 9–15, if n is non-root and its parent p is distinct from m, we
add to the concept expression C so far obtained a new conjunct of the form
∃R−.D, where R is the role name associated with the edge from p to n and D
is the recursive encoding of the subquery of Q rooted in p. The third argument
to encode represents the previously processed node and it used to control the
encoding in two ways:

• when the active call originated from within a call having as focus one of
the children of the current focus, it avoids a recursive call with that child
as focus (see lines 5–8);

Chapter 3. Theoretical Foundations 30

w

x

y

marriedTo

owns−

z

inhabitedBy

{SinglePerson,Man}

{Woman}

{Beautiful,House}

{RichPerson}

Figure 3.6: The context of the query in Figure 3.1a with respect to node w, repres-
ented as a tree. The edges in the path from the (original) root x to the focus w are
inverted in the context using the operator “−”.

• when the active call was initiated from within a call having as focus the
parent node of the current focus, it inhibits the execution of lines 12–13.

The DL concept resulting from roll-up(Q,n) is called the context of Q with
respect to n. The context of a query Q contains essentially the same informa-
tion as Q, but relative to a specific node n, which we call the focus. In other
words, the informative content of the query is expressed from the point of view
of the focus node. Although not formally correct, we can visualise the context
of a query Q w.r.t. a node n as a query C rooted in n, having the same nodes
as Q along with their labels, and such that all the edges in the path from the
root of Q to n in Q are “inverted” in C, while all other edges in Q are left
untouched in C. For example, the context of the query in Figure 3.1a w.r.t.
node w is given by DL concept

Beautiful u House u ∃ owns− .
(
SinglePerson u Man u

∃marriedTo .Woman
)
u ∃ inhabitedBy .RichPerson

and it can be represented in the shape of a tree as shown in Figure 3.6.
Once we have defined the roll-up of a query, we can say that two queries are

equivalent if their corresponding encoding (i.e., the concepts into which they
are respectively encoded) are such.

Definition 3.10 (Query equivalence) Two queries Q1 and Q2 are equivalent,
in symbols Q1 ≡ Q2, if roll-up(Q1) ≡K roll-up(Q2).

Note that, from a formal point of view, the tree in Figure 3.6 is not a query,
as associating a role of the form R− with an edge is not allowed. However, if it
were such, then its roll-up (w.r.t. its root) would be equivalent to roll-up(Q,w),
where Q is the query of our running example, shown in Figure 3.1a.

The following definition introduces the important notion of query satisfiab-
ility with respect to a knowledge base, which is assumed to be consistent.

Definition 3.11 We say that a query Q over a consistent knowledge base K
is satisfiable if its roll-up is such in K, that is, if K 6|= roll-up(Q) v ⊥.

The functional API of the Query Tool consists of three main parts: the un-
derlying reasoning services, the operations for query manipulation and, lastly,
the constraints that such operations impose on the resulting query in order to
opportunely restrict the number of possible linearisations.

Chapter 3. Theoretical Foundations 31

3.2.1 Reasoning services

We start the specification of the Query Tool’s functional API by defining the
reasoning services that are needed and used by some of the other operations in
order to modify a query in a meaningful way.

Definition 3.12 (getCompatibles) The operation getCompatibles takes as in-
put a query Q and a focus node n ∈ V (Q), and returns a DAG G = (V,E),
in which V ⊆ C. Let C = roll-up(Q,n) be the context of Q w.r.t. n. Then, a
concept name c ∈ C belongs to V if and only if all of the following conditions
are satisfied:

K 6|= c u C v ⊥ ; (3.12a)
K 6|= c v C ; (3.12b)
K 6|= C v c . (3.12c)

A pair 〈c1, c2〉 ∈ V × V belongs to E if and only if c2 is a direct sub-concept
of c1 in K.

Definition 3.13 (getRelations) The operation getRelations takes as input a
query Q and a focus node n ∈ V (Q), and returns a DAG G = (V,E), in which
V ⊆ R × C. Let C = roll-up(Q,n) be the context of Q w.r.t. n. Then, a pair
〈r, c〉 ∈ R × C belongs to V if and only if all of the following conditions are
satisfied:

K 6|= ∃r−.C v ⊥ ; (3.13a)

K |= c v ∃r−.C or K |= ∃r−.C v c . (3.13b)

A pair 〈〈r, c1〉, 〈r, c2〉〉 ∈ V × V belongs to E if and only if c2 is a direct super-
concept of c1 in K.

Definition 3.14 (getSupers) The operation getSupers takes as input a query
Q and a selection S within Q, and returns a DAG G = (V,E), with V ⊆ C. A
concept name c ∈ C belongs to V if and only if all of the following conditions
are satisfied:

K 6|= c v roll-up(S) ; (3.14a)
K |= roll-up(S) v c ; (3.14b)

A pair 〈c1, c2〉 ∈ V × V belongs to E if and only if c2 is a direct super-concept
of c1 in K.

Definition 3.15 (getEquivalents) The operation getEquivalents takes as input
a query Q and a selection S within Q, and returns a DAG G = (V,∅), with
V ⊆ C. A concept name c ∈ C belongs to V if and only if all of the following
conditions are satisfied:

K |= c v roll-up(S) ; (3.15a)
K |= roll-up(S) v c . (3.15b)

Definition 3.16 (getSubs) The operation getSubs takes as input a query Q
and a selection S within Q, and returns a DAG G = (V,E), with V ⊆ C. A

Chapter 3. Theoretical Foundations 32

concept name c ∈ C belongs to V if and only if all of the following conditions
are satisfied:

K |= c v roll-up(S) ; (3.16a)
K 6|= roll-up(S) v c ; (3.16b)
K 6|= c u roll-up(Q, oS) v ⊥ ; (3.16c)

where oS denotes the root of S. A pair 〈c1, c2〉 ∈ V × V belongs to E if and
only if c2 is a direct sub-concept of c1 in K.

3.2.2 Operations on queries

We will now introduce the operations that are available to the user in order to
refine the query. We start with two operations for adding further constraints
to the query, namely new concepts and relations. As the query becomes more
restrictive, we need to make sure that what the new constraints are compatible
with it, in the sense of Definition 3.12 for concepts and of Definition 3.13 for
relations.

The operation addCompatible takes as input a focused query and a concept
name, obtained by means of getCompatibles (thus compatible with the current
query), and adds it to the set of concept names associated with the focus. The
operation is defined as the grafting of an atomic query consisting only of the
focus associated with the compatible concept name onto the input query. An
example of application of the addCompatible operation is shown in Figure 3.7.

Definition 3.17 Let Q be a query and let n ∈ V (Q) be a focus node. Then,
for c ∈ V

(
getCompatibles(Q,n)

)
we define:

addCompatible(Q,n, c) := Q dR ,

where R is the atomic query 〈n,∅, {n 7→ {c}} ,∅〉.
The operation addRelation takes as input a query Q, a focus node n and a

pair consisting of a role name r and a concept name c, which are obtained by
means of getRelations, hence compatible with the current query. The operation
is defined as the grafting onto Q of a query R consisting of the focus node n, a
new node n′ (not in Q) associated with the singleton {c} and an edge from n to
n′ associated with r. An example of application of the addRelation operation
is shown in Figure 3.7.

Definition 3.18 Let Q be a query and let n ∈ V (Q) be a focus node. Then,
for 〈r, c〉 ∈ V

(
getRelations(Q,n)

)
we define:

addRelation(Q,n, 〈r, c〉) := Q dR ,

with R = 〈n, {〈n, n′〉} , {n 7→ {VQ(n)} , n′ 7→ {c}} , {〈n, n′〉 7→ r}〉, where n′ ∈
N and n′ 6∈ V (Q).

We now introduce an operation called prune that, though not directly avail-
able to the user, is used by the other operations for query modification, which
will be defined later on. Given two queries Q and S, the operation prune deletes
from Q the maximal number of non-root nodes, having no incoming sticky edge
(if any) and that in S are associated with the same concept names as in Q, such

Chapter 3. Theoretical Foundations 33

x

y

livesIn

{RichPerson,Man}

{House}

(a)

x

y

livesIn

{RichPerson,Man}

{House,Beautiful}

(b)

x

y

livesIn

w

marriedTo

{RichPerson,Man}

{House} {Woman}

(c)

Figure 3.7: (a) A query Q, (b) the output of addCompatible(Q, y, Beautiful), and (c)
the output of addRelation(Q, x, 〈marriedTo, Woman〉).

that the result is still a query. An example of pruning is given in Figure 3.8a,
where only y is deleted in (a), because the deletion of w would not result in a
tree.

Definition 3.19 (prune) Let Q and S be queries and let Ẽ be a set of sticky
edges. Let

N :=
{
n ∈ V (Q) | Vdes,Q(n) = ∅, n ∈ V (S), VS(n) = VQ(n),

@e ∈ Ẽ . ter(e) = n
}

(3.17)

be the set of all nodes that are associated with the same set of concept names
in both Q and S, but which are non-root leaves in Q and are not the terminal
node of a sticky edge, and let

R := 〈 V (Q) \N, E(Q)−N, V|V (R), E|E(R) 〉 (3.18)

be the query resulting from Q by deleting all of the nodes in N , along with the
corresponding incident edges. Then, the operation prune(Q,S, Ẽ) is recursively
defined as follows:

prune(Q,S, Ẽ) =

{
R R = Q ,

prune(R,S, Ẽ) otherwise .
(3.19)

Note that in prune, the input argument S is not required to be a selection
within Q, but it can be any query. However, in the example of Figure 3.8a, we
used a selection for reasons of space.

We can now introduce the rest of the operations for query refinement, start-
ing with two operations, called weaken and delete, for removing existing con-
straints from the current query, therefore resulting in more general one. The
operation weaken is simply defined as the weakening of a query w.r.t. a selec-
tion, while the operation delete is a weaken followed by a prune. An example of
weaken was already provided in Figure 3.4, while the result of the application
of the delete operation to the query of Figure 3.4a is shown in Figure 3.8b.

Definition 3.20 (weaken, delete) Let S be a selection within a query Q and
let Ẽ be a set of sticky edges. We define the following operations:

weaken(Q,S) := Q	 S ;

delete(Q,S, Ẽ) := prune
(
weaken(Q,S), R, Ẽ

)
;

Chapter 3. Theoretical Foundations 34

x

w

z

inhabitedBy

owns

{RichPerson,Man}

{Beautiful,House}

{SinglePerson}

(a)

x

w

z

inhabitedBy

owns

{Man}

{>}

{SinglePerson}

(b)

Figure 3.8: The result of the application of the operations (a) prune and (b) delete
on the query of Figure 3.4a.

where R is the query obtained from S by replacing its node-labelling function
with (

(VQ ∩̂ VS) [∅ / {>}]
)
|V (S)

.

The last operation we introduce is the “substitution” of a selection with an
equivalent, more general or more specific concept. In case of substitution with
a more general (resp. more specific) concept, we speak of generalisation (resp.
specialisation). Clearly, the resulting query will be equivalent to or more gener-
al/specific than the input query according to whether the substituting concept
is equivalent to or more general/specific than the selection. The substitute op-
eration takes as input a query, a selection within it, a set of sticky edges and
a concept name chosen among those returned by getSupers, getEquivalents and
getSubs. This substituting concept is then added to the set of concept names
associated with the root of the selection, similarly to what is done when adding
a compatible term, and afterwards the selection is deleted from the query us-
ing delete. An example of substitution with a more specific concept (that is, a
specialisation) is provided in Figure 3.9. Generalisation and substitution with
an equivalent concept or with more complex selections are analogous.

Definition 3.21 (substitute) Let S be a selection within a query Q and let Ẽ
be a set of sticky edges. For a concept name c ∈ V (getSupers) ∪ V (getEquiva-
lents)∪ V (getSubs) we define the following operation:

substitute(Q,S, Ẽ, c) := delete(Q dR,S, Ẽ)

where R is the atomic query 〈oS ,∅, {oS 7→ {c}} ,∅〉.

3.2.3 Linearisation constraints

In this section, we consider queries resulting from the application of the oper-
ations introduced previously and define how these are linearised. For this pur-
pose, we extend each operation by imposing additional constraints that every
linearisation of the output query must satisfy and such that it is uniquely de-
termined for any given linearisation of the input query. In other words, for

Chapter 3. Theoretical Foundations 35

x

y

marriedTo

w

owns

{RichPerson}

{Person} {House}

(a)

x

y

marriedTo

w

owns

{RichPerson}

{Woman} {House}

(b)

Figure 3.9: (a) A selection S within a query, and (b) the result of substituting S with
the more specific concept Woman.

each linearisation C of the input query Q, there exists one and only one linear-
isation C′ of the output query Q′, that is, C′ is a function of C. In particular,
given an operation op taking as input a query Q and an ordered sequence I of
additional arguments, its counterpart opC takes as input the same query and
extra arguments of op plus a linearisation C of Q. Then, opC(Q, I,C) returns
a pair 〈Q′,C′〉, where Q′ = op(Q, I) and C′= f(Q′, I,C) is a linearisation of
Q′ obtained from the given linearisation of the input query and the additional
arguments to op. Function f is called the linearisation function of opC and
defines the linearisation constraints to be satisfied by C′ w.r.t. C.

Note that the proposed design is modular in that it allows us to independ-
ently modify the linearisation constraints imposed by each operation without
affecting the structural changes (i.e., those on the query tree and labelling
functions) that the original operation performs on the input query.

We first introduce three basic operations which will be subsequently com-
bined together in the construction of the linearisation function of each core
operation introduced in the previous section. We will use the following “build-
ing blocks”:

Definition 3.22 (Left-Insertion) Let 〈A,<〉 be a totally ordered set with <
strict, a ∈ A and b 6∈ A. Then, insL(b,<, a) returns the (only) strict total order
<′ on A ∪ {b} such that < ⊆ <′ and bl′ a.

Definition 3.23 (Right-Insertion) Let 〈A,<〉 be a totally ordered set with
< strict, a ∈ A and b 6∈ A. Then, insR(b,<, a) returns the (only) strict total
order <′ on A ∪ {b} such that < ⊆ <′ and al′ b.

Left-insertion takes care of inserting a new element b into a set A ordered
by a strict total order < in such a way that b immediately precedes a given
element a of A and the previous order on the elements of A is preserved. Right-
insertion performs a similar task, only that in this case b immediately follows
a. Thanks to Lemmas 2.1 and 2.2, both operations are well-defined and can
be regarded as functions, as the result they produce is uniquely determined by
their input arguments.

Informally, the operation addCompatibleC imposes the following linearisa-
tion constraint: “the compatible label immediately follows the maximum label
(w.r.t. C) of the focus node”.

faddCompatibleC(n, c,C) := insR
(
〈n, c〉,C, lmax

)
(3.20)

where lmax = maxC
(
{〈n, z〉 ∈ labels(Q) | z ∈ V(n)}

)
.

Chapter 3. Theoretical Foundations 36

Informally, the operation addRelationC imposes the following linearisation
constraint: “the label of the range node immediately precedes the minimum
label (w.r.t. C) among those of the edges outgoing from the focus and immedi-
ately follows the edge label of the new property”. Let n′ = V (Q′) \ V (Q) and
e′ = E(Q′) \ E(Q).

faddRelationC(n, 〈r, c〉,C) := insL
(
lprop, insL(lrange,C, lprop), lmin

)
(3.21)

where lmin = minC
(
{〈e, E(e)〉 ∈ labels(Q) | e ∈ Ein(n)}

)
, lprop = 〈e′, r〉 and

lrange = 〈n′, c〉.

3.3 Main Results

The framework and the functional API we devised allow us to formally demon-
strate the central property of the Query Tool, namely the fact that it produces
only queries which are satisfiable, according to Definition 3.10.

Theorem 3.1 The query obtained by means of a finite number of applications
of the operations addCompatible, addRelation, substitute, weaken and delete to
an initial atomic query is satisfiable.

Proof. By induction on the number of applications of the operations. The base
case is that in which the query is atomic and no operation is applied. Then, its
roll-up is simply a concept name, therefore trivially satisfiable if the knowledge
base over which the query is formulated is consistent.

For the inductive step, let Q be a query obtained by means of n applications
of the operations and assumeQ to be satisfiable. We need to show that a further
application of each and any of the operations to Q results in a query Q′ which
is still satisfiable. This is trivial in the case of delete and weaken, because both
of them always result in a query that is more general than the input one. The
application of substitute when the substituting term is an element of getSupers
or getEquivalents results in a query that is more general than or equivalent to
the input one, therefore satisfiable too. In the case of substitute with a more
specific term (that is, an element of getSubs), addCompatible and addRelation,
the satisfiability of the resulting query follows from the definition of getSubs,
getRelations and getCompatibles, respectively.

In the remainder of this section we present some interesting properties of
linearisations which can be formally proved in our framework, including a few
general ones that hold for every linearisation. We start by showing that the con-
ditions given in the definition of linearisation, specifically (3.10b) and (3.10c),
imply that “the label of each edge is followed by all the labels of its end node”.

Proposition 3.1 Every linearisation C of a query Q is such that, for each
edge e ∈ E(Q), the following holds:

∀l ∈ labels(ter(e)), 〈e, E(e)〉 C l . (3.22)

Proof. Let C be a linearisation of a query Q, let n = ter(e) and l = 〈e, E(e)〉,
for some e ∈ E(Q). As C is a linearisation of Q, it satisfies all the conditions
of Definition 3.7. If V(n) is a singleton, then (3.22) follows directly by (3.10b).
Let us now consider the case |V(n)| > 1. By (3.10b), there is l1 ∈ labels(n) s.t.

Chapter 3. Theoretical Foundations 37

l J l1. Since |V(n)| > 1, there exists l2 ∈ labels(n) distinct from l1 and, as C
is a linearisation of Q, either l1 C l2 or l2 C l1.

Suppose l2 C l1. Then, since l immediately precedes l1, we have l2 C l C l1
and by (3.10c) we obtain l ∈ labels(n), which is a contradiction of the fact that
l is an edge label. Therefore, it must hold that l1 C l2 and, by the transitivity
of C, also l C l2 holds. The case in which l1 C l2 is analogous and, since l2 was
chosen arbitrarily among the labels of n, this concludes our proof.

We say that a linearisation C of a query Q is compatible with a strict partial
order ≺ on V (Q) if, for all n,m ∈ V (Q)

n ≺ m =⇒ ∀l1 ∈ labels(n),∀l2 ∈ labels(m) . l1 C l2 (3.23)

Then, the following result is a direct consequence of Definition 3.7 and Propos-
ition 3.1.

Lemma 3.1 Every linearisation of a query Q is compatible with the tree-order
of (the underlying tree of) Q.

Proof. Let C be a linearisation of a query Q and let ≺ be the tree-order of
T =

(
V (Q), E(Q)

)
. Let n1, n2 ∈ V (Q) be such that n1 ≺ n2, hence there is a

path from n1 to n2 in T . By (3.10a) and (3.22), with respect to C, each edge
in the path is preceded by all the labels of its start node and followed by all
the labels of its end node. Then, our claim follows by the transitivity of C.

The next property we show is that a linearisation always “starts” from the
root of the query.

Proposition 3.2 Every linearisation of a query is such that the minimum
label is a label of the root.

Proof. Let C be a linearisation of a query Q, and let lmin = minC
(
labels(Q)

)
.

We want to show that lmin is a label of the root of the query, that is, lmin ∈
labels(o). By (3.10a), an edge label cannot be minimal w.r.t. C because it is
always preceded by all the labels of its initial node. Thus, lmin is a node label,
that is, lmin ∈ labels(n) for some n ∈ V (Q).

Now, suppose n 6= o. Since each node other than the root has a (unique)
parent, there exists an edge e = 〈z, n〉 ∈ E(Q), for some node z ∈ V (Q), with
z 6= n. By (3.22), C is such that each edge label must precede all the labels of
its end node, but this is not possible by the minimality of lmin. Therefore, we
conclude that n = o.

The last general property of linearisations that we prove is that by restrict-
ing the linearisation of a query on any of its subqueries, we obtain a linearisation
of that subquery.

Lemma 3.2 Let C be a linearisation of a query Q. Then, for each subquery S
of Q, the restriction of C on labels(S) is a linearisation of S.

Proof. Let S ⊆ Q and let CS denote the restriction of C on labels(S). Clearly,
CS is a strict total order on labels(S), but we need to show that in addition it
satisfies the conditions of Definition 3.7.

As S ⊆ Q, each edge of S is also an edge in Q and each node of S is also a
node in Q. Moreover, the initial and terminal nodes of an edge in S are nodes

Chapter 3. Theoretical Foundations 38

in S, hence also in Q. For each edge e in S we have that ES(e) = EQ(e) and we
write the edge label associated with e as 〈e, E(e)〉 (which is the same both in S
and Q). However, for each node n in S we have that labelsS(n) ⊆ labelsQ(n).

Suppose there is a label l ∈ labels(S) for which CS does not satisfy (3.10a)
or (3.10c). Then, in both cases l causes the same condition not to be satisfied
also by C, which is a contradiction.

Now, suppose that CS does not satisfy (3.10b) w.r.t. some e ∈ E(S). Let
n = ter(e) and le = 〈e, E(e)〉. Then, there is no label l ∈ labelsS(n) such that
le JS l. Since CS is a strict total order, there is indeed some l1 ∈ labels(S)
such that le JS l1, but then l1 6∈ labelsS(n), hence also l1 6∈ labelsQ(n). Assume
w.l.o.g. that labelsS(n) is a singleton whose only element is l2. Then, we have
either l2 CS le or le CS l2. Since C is a linearisation of Q, it satisfies (3.10b),
thus there is l′ ∈ labelsQ(n) such that le J l′.

In the case in which l2 CS le, we have l2 C le C l′ and since both l2 and l′

belong to labels(Q)Q(n) while le does not, this is a contradiction of (3.10b). In
the case in which le CS l2, we have le JS l1 C2 l2, hence le J l′ C l1 C l2. Since
l′ and l2 are both in labels(Q)Q(n) while l1 is not, this is again a contradiction
of (3.10b).

Theorem 3.2 The query obtained through a finite number of ordered applic-
ations of the operations addCompatible, addRelation, substitute, weaken, delete
to an initial atomic query admits one and only one linearisation satisfying all
of the constraints that each operation imposes.

CHAPTER 4
Implementation

Following the formal specification presented in the previous chapter, the Query
Tool has been redesigned and reimplemented, undergoing deep and radical
changes at its core. The result is a better organised and more flexible system,
which we will here illustrate in detail. The most important and significant
difference from the old Query Tool consists in the use of the OWL-API in place
of the previous DIG-based reasoning engine. This allowed for the adoption of
the OWL-DL standard and paid back in terms of execution speed and ease of
use.

The project is currently in alpha stage and the latest development version
of the source code can be checked out from the Git repository http://russel.
inf.unibz.it/~pguagliardo/querytool.git.1 The Query Tool provides the
following features:

• Choice of the schema file to load (at present only *.owl files are suppor-
ted);

• Choice of which reasoner to use (either Pellet or FaCT++);

• Creation of a new query by selecting a starting term among the available
classes present in the schema;

• Selection of a focus node for adding a compatible term chosen from a list
of available ones (depending on the current query and focus);

• Selection of a focus node for adding a new relation chosen from a list of
available ones (depending on the current query and focus);

• Pretty-printing of the query as a tree with indentation of children.

4.1 Structure and Design

The core of the new Query Tool software is a JavaTM library consisting of the
following main packages:

1The link is accessible only from within the Scientific Network of South Tyrol.

39

http://russel.inf.unibz.it/~pguagliardo/querytool.git
http://russel.inf.unibz.it/~pguagliardo/querytool.git

Chapter 4. Implementation 40

it.unibz.qtool

it.unibz.qtool.model

it.unibz.qtool.lang

it.unibz.qtool.owl

it.unibz.qtool.traversal

it.unibz.qtool.util

Figure 4.1: Package diagram of the Query Tool

• it.unibz.qtool.model contains the Java interfaces representing entities
and relationships between them in a conceptual schema;

• it.unibz.qtool.lang provides language constructs for combining schema
entities and relationships into complex expressions;

• it.unibz.qtool.owl contains the Java classes used for importing a con-
ceptual schema from an OWL ontology and reasoning over it;

• it.unibz.qtool contains the Java classes representing queries and se-
lections, and provides the interface to the reasoning services used for
modifying a query in a consistent way.

The complete package diagram of the Query Tool is shown in Figure 4.1. As
we shall see later on, the packages it.unibz.qtool.traversal and it.unibz
.qtool.util include few additional interfaces and classes which are used for
performing general operations on queries. For the moment, we concentrate our
attention on the base package it.unibz.qtool and its model, lang and owl
subpackages.

As shown in Figure A.1, the model package is organised as follows: the Java
interface Schema represents a conceptual schema consisting of SchemaElement’s,
each of which can be a SchemaClass or a SchemaProperty. Moreover, the lat-
ter may be a SchemaRelation or a SchemaAttribute, although attributes and
datatypes are not currently supported (see Chapter 5). As we only deal with
roles, a SchemaRelation is intended to represent a binary relation between two
SchemaClass’s. The fundamental interface in the package is SchemaAdapter,
which is responsible of importing a specific Schema from an external source
such as a file. Note that this interface is parametrised with the kind of schema
it is able to process.

Figure A.2 shows the structure of the lang package, containing the lan-
guage constructs for building complex expressions from schema classes and re-
lations. Two kinds of expressions can be constructed: ConceptExpression and
RoleExpression, whose basic building blocks are respectively SchemaClass
and SchemaRelation, in the sense that a schema class (relation) is a concept
(role) expression itself. The only other RoleExpression is InverseRole, rep-
resenting the inverse of a role expression, while a ConceptExpression can be
built using the following constructs:

• ComplementOf represents the negation of a concept expression;

Chapter 4. Implementation 41

DL Description Java interface

R ∈ R role name SchemaRelation
R ∈ R ∪ {R− |R ∈ R} general role RoleExpression
R− inverse role (with R general

role)
InverseRole

A ∈ C atomic concept (concept
name)

SchemaClass

C general concept (can be
atomic)

ConceptExpression

¬C negation ComplementOf
C uD conjunction IntersectionOf
∃R.C existential quantification SomeRestriction

Table 4.1: Correspondence between DL constructs and the Java interfaces represent-
ing them in the Query Tool.

• IntersectionOf represents the conjunction of two or more concept ex-
pressions;

• SomeRestriction operates on a role expression and a concept expression,
and represents the complex concept ∃R.C of DL, where R is a role and
C a concept.

The correspondence between role and concept constructs in DL and the Java in-
terfaces used for representing them in the Query Tool can be found in Table 4.1.

The class diagram of the base package it.unibz.qtool is shown in Fig-
ure A.4. The Java class Node represents a node in a labelled tree, thus having
a single parent Node, which may be null if the node in question is root, and a
list of child Node’s. Moreover, it is associated with a list of SchemaClass’s and
the incoming edge from its parent (if any) is labelled by a SchemaProperty.
The main class of the package is Query, which represents a tree as an ag-
gregation of Node’s and keeps track of its root. The Query class contains
methods implementing all of the operations defined in the Query Tool func-
tional API (see Chapter 3, Section 3.2.2), which are used for modifying the
query tree itself. In order to do this in a consistent way, so that the ob-
tained query is always satisfiable, Query has methods for getting the compat-
ible terms and relations, which depend on its current status, by triggering the
necessary reasoning services discussed in Section 3.2.1 of Chapter 3. These
are in turn provided by a QueryReasoner associated with the Schema over
which the query is created. Before any reasoning task, a Query must be en-
coded into a ConceptExpression: this is accomplished by means of the method
getContextWRT(Node), that performs the roll-up of the query by implement-
ing Algorithm 3.1. Note that, given a query q, a call to q.encode() yields
the same result of q.getContextWRT(q.getRoot()), coherently with Defini-
tion 3.9. In fact, the encode() method is provided only for convenience. Some
operations, like substitute, require a selection within the query: a Selection
associates one or more nodes with a subset of their labels, thus defining a sort
of “filter” on the query. When a selection is present, the encode(Selection)
method of Query encodes the query taking into account only the nodes and

Chapter 4. Implementation 42

their associated labels in the selection. For this reason, before encoding and/or
using a Selection, we need to make sure that it is connected by calling its
isConnected() method.

As shown in figure A.3, the only Java classes in the owl package are
OWLSchema, OWLSchemaAdapter and OWLQueryReasoner, implementing the (ex-
ternal) interfaces Schema, SchemaAdapter and QueryReasoner, respectively.
As mentioned earlier, the OWLSchemaAdapter opportunely binds the parameter
T, which must be of type Schema (see Fig. A.1), of the SchemaAdapter interface
to OWLSchema, whose creation it is responsible of. An OWLSchema is then associ-
ated with an OWLQueryReasoner, which interacts with the underlying reasoner
by means of the OWL-API.

4.2 Code Examples

In this section we present some concrete examples of how the Query Tool API
is used in practise from the developer’s point of view.

Importing a schema

In order to get a Schema populated with data coming from an external source
(currently only files are supported), one first needs to create an instance of a
SchemaAdapter for the particular kind of schema to be imported, and then
call the appropriate method of the adapter which actually loads the data from
the desired source. For instance, to load an OWL ontology from a file, we
create a new OWLSchemaAdapter specifying which reasoner to associate with
the schema (either ReasonerType.PELLET or ReasonerType.FACTPLUSPLUS)
and then call the method importSchema(File f), as shown in Listing 4.1.
Note that OWLSchemaAdapter is a SchemaAdapter<OWLSchema>, that is, an
adapter for dealing with OWL schemas.

1 Schema sch = null;

2 SchemaAdapter <OWLSchema > adp = new OWLSchemaAdapter(ReasonerType.

PELLET);

3 try {

4 sch = adp.importSchema(new File("path/to/ontology.owl"));

5 } catch (Exception e) {

6 e.printStackTrace ();

7 }

Listing 4.1: Code for importing an OWL ontology from a file.

Creating a query

A query is created over a previously imported schema and initialised with a
SchemaClass chosen among all classes in the schema, which can be retrieved
by calling the method getSchemaClasses() of Schema. The general steps to
follow in order to create a new (atomic) query are listed below:

1. import a Schema by using the appropriate SchemaAdapter and associate
it with a suitable QueryReasoner;

2. create an instance of Query over the imported conceptual schema;

Chapter 4. Implementation 43

3. initialise the query with a starting term chosen among the SchemaClass’s
of the schema associated with the query.

As example, suppose we performed the first step by importing an OWL on-
tology as in Listing 4.1; then, to create and initialise a new query over the
imported schema, we proceed as in Listing 4.2.

8 Collection <SchemaClass > classes = sch.getSchemaClasses (); // get

all classes in the schema

9 SchemaClass term = /* ...

10 code for capturing the user choice of an element from "classes

"

11 ... */

12 Query q = new Query(sch); // create a new query over the schema

13 q.init(term); // initialise the query with chosen starting term

Listing 4.2: Code for creating and initialising a new query over a previously
imported schema sch.

In future versions of the Query Tool, we plan to directly initialise a query with
> at the time of its creation, so that explicit initialisation will not be required
anymore. The user can then substitute the starting term with a more specific
one. Note that the representation of > is schema-dependent2 and it can be
obtained from a specific Schema by calling its getTopConcept() method (see
Figure A.3).

Adding a compatible term

To perform this operation we need a focus Node and a SchemaClass compatible
with the current query. The former is chosen among all nodes in the query,
which can be obtained with a call to getNodes(). The latter must be chosen
from the available compatible terms (if any), which depend on the current query
and focus and are obtained by calling the getCompatibles(Node n) method
of the query, where n is the focus node. Finally, a call to the method add-
Compatible(Node n, SchemaClass c) adds the chosen compatible c to the
labels of the focus node n. Listing 4.3 shows an example of how the described
process is realised in practise.

1 Collection <Node > nodes = q.getNodes (); // get all nodes in the

query

2 Node focus = /* ...

3 code for capturing the user choice of an element from "nodes"

4 ... */

5 Collection <SchemaClass > compatibles = q.getCompatibles(focus); //

get available compatible terms wrt focus

6 if (compatibles.isEmpty () == false) {

7 SchemaClass comp = /* ...

8 code for capturing the user choice of an element from "

compatibles"

9 ... */

10 q.addCompatible(focus , comp); // add chosen compatible to the

query

11 }

Listing 4.3: Code for adding a compatible term to a query q.

2For instance, in an OWL ontology > is represented by the OWL class owl:Thing.

Chapter 4. Implementation 44

Adding a relation

This operation requires a focus Node (as before), a SchemaRelation and its
range, which is a SchemaClass. The new relation must be chosen among
those which do not make the query unsatisfiable if attached to the focus node.
These compatible relations (which depend on the current query and focus) are
obtained by calling the query’s getRelations(Node focus) method, which
for each compatible relation also returns a set of suitable SchemaClass’s to
be used as range. The chosen relation and its range can then be added to
the query with a call to addProperty(Node focus, SchemaRelation rel,
SchemaClass range). An example of the above process is shown in Listing 4.4.

1 Collection <Node > nodes = q.getNodes (); // get all nodes in the

query

2 Node focus = /* ...

3 code for capturing the user choice of an element from "nodes"

4 ... */

5 Map <SchemaRelation , Set <SchemaClass >> compRels = q.getRelations(

focus); // get compatible relations and ranges

6 if (compRels.isEmpty () == false) {

7 Set <SchemaRelation > rels = compRels.keySet ()); // get

compatible relations

8 SchemaRelation chosenRel = /* ...

9 code for capturing the user choice of an element from "

rels"

10 ... */

11 Set <SchemaClass > ranges = compRels.get(rel); // get available

ranges for chosen relation

12 SchemaClass chosenRange = /* ...

13 code for capturing the user choice of an element from "

ranges"

14 ... */

15 q.addProperty(focus , chosenRel , chosenRange); // add chosen

relation and range to the query

16 }

Listing 4.4: Code for adding a new (compatible) relation to a query q.

4.3 Usage Notes for the Graphical User Interface

Although the new implementation concerns only the core of the Query Tool,
that is, the reasoning services and the operations for query manipulation, a
textual interface has been devised, with the only purpose of testing the beha-
viour of the system with respect to the input from the user. We will here briefly
describe this textual interface, but some screenshots of the new graphical user
interface that we currently have in the works can be found in Appendix B.

The version 0.1 of the Query Tool is a command-line application the user
interact with which the user interacts by means of the above mentioned textual
interface. To run the program (Java 1.5 or higher is required) simply unpack
the archive and launch the JAR file from a terminal as follows:

java -jar qtool.jar

The initial menu of the QueryTool is shown below.

Chapter 4. Implementation 45

+-------------------------------------+

| QueryTool - version 0.1 (alpha) |

+-------------------------------------+

[0] Load OWL ontology

[1] Exit

Your choice:

In order to load an OWL file, we must first choose the type of reasoner we want
to associate with the imported schema. This can be either Pellet or FaCT++
as shown below.

[0] Pellet

[1] FaCT++

Your choice:

Note that for using FaCT++ the native library for your architecture must be
in your java library path.3 After choosing the reasoner, you will be prompted
for the OWL file to load.

Filename: test -ontologies/cars.owl

The OWL ontology stored in the selected file is imported into a new in-memory
schema, which is classified upon loading by the (previously chosen) reasoner
associated with it.

Loading file ’test -ontologies/cars.owl ’... done

FaCT ++. Kernel: Reasoner for the SROIQ(D) Description Logic

Copyright (C) Dmitry V. Tsarkov , 2002 -2009. Version 1.2.3 (05

March 2009)

Imported ontology ’http ://www.inf.unibz.it/~ dongilli/ontologies/

cars4 -tiny ’

Once the import process is successfully completed, the program shows the
following main menu:

[0] New query

[1] Show query

[2] Add compatible

[3] Add relation

[4] Select

[5] Delete

[6] Weaken

[7] Substitute

[8] Exit

New query In order to create a new query over the imported schema, the
user is asked to choose a starting term among all the classes in the schema.

Show query The program pretty-prints the current query tree indenting the
children of each node as shown below:

[Car]

has_make [Car_make]

located_in_country [Country]

equipped_with [Equipment]

3See the FaCT++ documentation for more information.

Chapter 4. Implementation 46

Add compatible First, the program asks for the selection of a focus node,
but the root is automatically selected if it is the only node in the query. Then
the class to be added has to be chosen from a list of compatible ones.

Add relation First, the program asks for the selection of a focus node, but
the root is automatically selected if it is the only node in the query. Then the
relation to be added has to be chosen from the list of those which are consistent
with the context of the query w.r.t. to the selected focus. If there is more than
one class as the range of the relation, then the user is asked to choose from the
list of available ones. Otherwise the range is set automatically.

Select The query is printed and each node is associated with an integer. The
user is then asked to choose one of the following selection types:

[0] Atomic

[1] Single

[2] Complete

[3] Custom

In the case of atomic selection, the user is asked to choose a node and a concept
name within it; while for single and complete selections, the user is only asked
to choose a node. In the case of custom selection, the query is printed and each
node is associated with an integer identifier. Then, the user is asked to specify
a selection using the following syntax:

(:<node-id> [<concept-id>]∗)+.

where <node-id> is the integer associated with some node and <concept-id>
is an integer identifying a concept name associated with the specified node. For
instance, to select the root and the second and third concept names associated
with it, one would write :0 2 3. Clearly, at least one (but possible more) node
must be specified and if for some node no <concept-id> is given, then the
chosen node is selected along with all the concept names associated with it.

Delete If a selection has not been set, the program asks for one. The specified
selection or the existing one is then checked and whenever admissible (that is,
connected) it is deleted from the current query.

Weaken Similar to the case of deletion, but a weakening is performed instead.

Substitute If a selection has not been set, the program asks for one. After
checking the sanity of the selection, the user is provided with the lists of con-
cepts that are equivalent to or more specific/general than the selection. The
user chooses the substituting term, with which the selection is then replaced.

We conclude the chapter by pointing out that, unfortunately, at present
no experiments for evaluating the usability of the new implementation have
been carried out yet. However, the system seems to behave well with respect
to the changes that have been introduced, especially those concerning the re-
placement of the reasoning engine, and we strongly believe that the paradigm of
interaction with the user of the new GUI (see Appendix B) will greatly improve

Chapter 4. Implementation 47

over the previous version. Clearly, this must be confirmed by new experiments,
which will performed as soon as the new graphical interface is finally integrated
with the core library (that is, the one described in Section 4.1) and will also
allow us to fully estimate the impact on the user of the new features (like the
possibility of building complex selection).

CHAPTER 5
Conclusion and

Future Work

In this thesis we presented a framework which formally defines the theoretical
foundations of the Query Tool, an experimental software meant to support users
in the task of formulating meaningful queries over an ontology. We provided
definitions which precisely specify the components and the behaviour of the
Query Tool, from a mathematical point of view. Moreover, we described how
a query can be linearised in a particular sequence of labels, satisfying some
constraints which are relevant for a representation in natural language.

A first benefit of our work is given by the fact that, since each operation
is thoroughly described in our functional API, it simplifies the task of the de-
veloper willing to implement a new system based on the Query Tool framework
or extend/improve the existing one.

From the point of view of the implementation, the Query Tool was re-
implemented from scratch following the formal specification, resulting in an
extensible, better organised and more flexible system. The most important
objective we attained is the replacement of the previous DIG-based reasoning
engine with the OWL-API, which enabled us to use and take full advantage of
the widespread OWL-DL standard endorsed by the W3C. The benefits deriv-
ing from the above transition include a faster execution of the reasoning tasks
and the possibility of using state-of-the-art reasoners in a straightforward way.

In the rest of this chapter, we would like to go over a few interesting exten-
sions and enhancements that could be possible in the future, in the hope that
our work will constitute a starting point as the basis of further development
and research.

5.1 Co-references in queries

A remarkable limitation of the current framework, and perhaps the most an-
noying one, is given by the fact that we can only represent conjunctive queries

48

Chapter 5. Conclusion and Future Work 49

x

y

inLoveWithmarriedTo

Person

Person

(a)

m
ar

rie
dT

o

inLoveW
ith

Person

{Mary} {Mary}
where Mary : Person

(b)

Figure 5.1: Queries with co-references

without co-references. As an example, consider the query:

{x | Person(x),marriedTo(x, y),Person(y), inLoveWith(x, y)} (5.1)

asking for “all the persons married to a person they are in love with”. Such
a query is not expressible in our framework, as it cannot be represented as
a tree. In fact, in order to deal with queries of this form one would need to
employ general graphs rather than trees, as shown in Figure 5.1a for (5.1).
Unfortunately, it is not possible to encode a query represented as a general
graph into a DL concept expression [22, pp. 143–144].

A limited form of co-reference could be achieved through the use of nom-
inals. The general idea we have in the works is shown in Figure 5.1b, which
represents as a tree the query asking for “all the persons married to and in love
with the individual Mary, who is a person”. However, the details of whether,
how and to which extent this approach can be cost-effectively exploited in
practise are not clear yet.

5.2 n-ary relations

In principle, our framework does not depend on any particular modelling lan-
guage, as long as the reasoning services we discussed in Chapter 3 are available
for it. Thus, we could for example use E-R or UML diagrams as conceptual
schemas, but in general these may contain relations other than binary, which
would cause problems with respect to our tree-shaped representation of queries.

A standard approach for dealing with n-ary relations is given by reification
[21], which is widely used in conceptual modelling and consists in viewing a
relationship as an entity, called a weak entity. The goal of reification is usually
that of making a relationship explicit, when additional information needs to be
added to it. However, what is more interesting for our purposes is the fact that
by means of reification we can actually “decompose” an n-ary relation into n

Chapter 5. Conclusion and Future Work 50

binary relations. An example is given by the Entity-Relationship diagrams of
Figure 5.2, where the ternary relation Kill shown in Figure 5.2a is reified into
the weak entity Killing and decomposed into the three binary relationships
Kill-M, Kill-V and Kill-W of Figure 5.2b.

KillMurderer Victim

Weapon

(a)

Killing

Kill-VKill-M Kill-W

Murderer Victim Weapon

(b)

Figure 5.2: Reification of a ternary relationship

5.3 Attributes and datatypes

An extended framework for dealing with attributes (that is, properties relating
a concept to a datatype) should be quite straightforward. In fact, the only
difference with the current framework would be that a node associated with a
datatype (i.e., the “range” of the attribute) cannot be the focus of a query for
operations other than deletion. This basically means that such a node is always
a leaf of the query tree and the only operation allowed on it is deletion. Then,
since a node of this kind cannot be refined by adding a compatible term or
attaching a new property, the query is never rolled-up with respect to it, thus
avoiding the nonsensical eventuality that an edge associated with an attribute
has to be inverted (going from the datatype to the subject).

The inclusion of these additional restrictions into the existing framework
should pose no particular problem and it is just a matter of working out the
technical details. In fact, in addition to object properties (or abstract roles), the
DL language SROIQ(D) (that is, SROIQ extended with datatypes) supports
also data properties (or concrete roles), hence the possibility of representing at-
tributes is directly available. As for the implementation, although full support
for dealing with attributes has to be added yet, their future presence has been
already taken into account in the design of the Query Tool, as Figure A.1
witnesses.

APPENDIX A
Class Diagrams

Schema
getSchemaClasses()
getSchemaRelations()
getSchemaAttributes()
getSchemaClass(URI)
getSchemaRelation(URI)
getSchemaAttribute(URI)
getTopConcept()
getBottomConcept()
getReasoner():QueryReasoner

SchemaAdapter
importSchema(src:File)

SchemaClass
getSuperClasses()
getEquivalentClasses()
getSubClasses()

SchemaElement
getSchema()
getURI()

SchemaProperty
isAttribute()
isRelation()

SchemaAttributeSchemaRelation
isInverse()
getInverse():SchemaRelation

T

1..1

1..*

<<create>>

Figure A.1: Class diagram for the package it.unibz.qtool.model

51

Appendix A. Class Diagrams 52

ConceptExpression RoleExpression

SchemaClass SchemaRelation

it.unibz.qtool.model

SchemaClass SchemaRelation

ComplementOf
getOperand()

IntersectionOf
getOperands()

SomeRestriction
getRoleExpr()
getFiller()

InverseRole
getOperand()

has operand

1..1

0..*

has operand

1..1

0..*

has operand

1..1

0..*

has operand

2..*

0..*

has operand

1..1

0..*

Figure A.2: Class diagram for the package it.unibz.qtool.lang

it.unibz.qtool

QueryReasoner

it.unibz.qtool.model

Schema SchemaAdapter
T

OWLSchema OWLSchemaAdapter OWLQueryReasoner

OWL-API

T

<<bind>>
<OWLSchema>

<<create>>

1..11..1

Figure A.3: Class diagram for the package it.unibz.qtool.owl

Appendix A. Class Diagrams 53

Query

getSchema()
getRoot()
getNodes()
init(SchemaClass)
addCompatible(Node, SchemaClass)
addRelation(Node, SchemaRelation, SchemaClass)
substitute(Selection, SchemaClass)
delete(Selection)
weaken(Selection)
prune(Selection)
getCompatibles(Node)
getRelations(Node)
getSubstitutes(Selection)
encode()
getContextWRT(Node)
encode(Selection)

Node
parent:Node
children:List<Node>
labels:List<SchemaClass>
edge:SchemaProperty
getChildren()
getEdge()
getLabels()
hasChildren()
isLeaf()
isRoot()

Schema

QueryReasoner
getAncestorClasses(ConceptExpression)
getSuperClasses(ConceptExpression)
getEquivalentClasses(ConceptExpression)
getSubClasses(ConceptExpression)
getDescendantClasses(ConceptExpression)
isSatisfiable(ConceptExpression)

Selection
getRoot()
getNodes()
getSelectedLabels(Node)
isSelected(Node)
isSimple()
isConnected()

it.unibz.qtool.model

Schema

1..*

1..1

0..*

1..*

1..1

1..1

1..1

0..*

0..*

1..1
<<access>>

has child

0..1

0..*

has parent

0..*

0..1

Figure A.4: Class diagram for the base package it.unibz.qtool

APPENDIX B
GUI Screenshots

Figure B.1: The starting atomic query

54

Appendix B. GUI Screenshots 55

Figure B.2: The menu for substitution includes equivalent, more general and more
specific terms. Note also the presence of a button for deletion.

Figure B.3: The menu for addition includes compatible terms and relations.

Appendix B. GUI Screenshots 56

Figure B.4: Only “car” is available as a substitute for “thing”, because the thing we
are looking for has a property “has model” with range “car model”, and the system
derives that it must be a car. Compare the results to those in Figure B.2.

Figure B.5: On mouse over, the portion of the query that is related to the focus (dark
blue) is highlighted (light blue).

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-
Wesley, 1995.

[2] T. Catarci, T. D. Mascio, P. Dongilli, E. Franconi, G. Santucci, and S. Tes-
saris. An ontology based visual tool for query formulation support. In
ECAI 2004 [14].

[3] T. Catarci, T. D. Mascio, P. Dongilli, E. Franconi, G. Santucci, and
S. Tessaris. An Ontology-Based Query Manager: Usability Evaluation.
In HCItaly2005 [16], pages 95–100.

[4] T. Catarci, T. D. Mascio, P. Dongilli, E. Franconi, G. Santucci, and S. Tes-
saris. Usability evaluation in the SEWASIE (SEmantic Webs and AgentS
in Integrated Economies) project. In HCII 2005 [15].

[5] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC ’77: Proceedings of the ninth
annual ACM symposium on theory of computing, pages 77–90, New York,
NY, USA, 1977. ACM.

[6] B. Davey and H. Priestley. Introduction to Lattices and Order, chapter 1.
Cambridge University Press, second edition, 2002.

[7] M. Dean and G. Schreiber. OWL Web Ontology Language Reference. W3C
Recommendation, W3C, Feb. 2004. http://www.w3.org/TR/2004/REC-
owl-ref-20040210/.

[8] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics,
chapter 1. Springer, second edition, 2000.

[9] Proceedings of the 2004 International Workshop on Description Logics
(DL2004), Whistler, BC, Canada, 2004.

[10] P. Dongilli. Natural Language Rendering of a Conjunctive Query. Tech-
nical Report KRDB08-3, KRDB Research Centre, Faculty of Computer
Science, Free University of Bozen-Bolzano, June 2008.

[11] P. Dongilli, P. R. Fillottrani, E. Franconi, and S. Tessaris. A multi-agent
system for querying heterogeneous data sources with ontologies. In SEBD-
2005 [23].

[12] P. Dongilli, E. Franconi, and S. Tessaris. Semantics driven support for
query formulation. In DL2004 [9].

57

Bibliography 58

[13] P. Dongilli, S. Tessaris, and J. A. Bateman. Leveraging Systemic-
Functional Linguistics to Enhance Intelligent Database Querying. In
ISDA’06 [18].

[14] Proceedings of the 16th Biennial European Conference on Artificial Intel-
ligence (ECAI 2004), Valencia, Spain, 2004.

[15] Proceedings of the 11th International Conference on Human-Computer In-
teraction (HCII 2005), Las Vegas, Nevada, USA, 2005.

[16] Proceedings of the 4th Italian Symposium on Human Computer Interaction
(HCItaly2005), Roma (Italy), 2005.

[17] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ.
In Proc. of the 10th International Conference on Principles of Knowledge
Representation and Reasoning (KR2006), pages 57–67. AAAI Press, June
2006.

[18] Proceedings of the Sixth International Conference on Intelligent Systems
Design and Applications (ISDA’06), Jinan, China, 2006.

[19] J. J. Kelly. The essence of logic. Prentice Hall, 1997.

[20] M. Kilp, U. Knauer, and A. V. Mikhalev. Monoids, Acts and Categor-
ies, volume 29 of Expositions in Mathematics, chapter 1, pages 1–13. de
Gruyter, 2000.

[21] A. Olivé. Conceptual Modeling of Information Systems, chapter 6, pages
123–134. Springer Verlag, 2007.

[22] U. Sattler, D. Calvanese, and R. Molitor. The Description Logic Hand-
book: Theory, Implementation and Applications, chapter 4, pages 137–177.
Cambridge University Press, 2003.

[23] Proceedings of the Thirteenth Italian Symposium on Advanced Database
Systems (SEBD-2005), Brixen-Bressanone, Italy, 2005.

[24] The SEmantic Webs and AgentS in Integrated Economies (SEWASIE)
project. http://www.sewasie.org/, 2005.

[25] I. Zorzi. An Ontology-Based Visual Tool for Query Formulation Support.
Bachelor’s thesis, Faculty of Computer Science, Free University of Bozen-
Bolzano, 2005.

[26] I. Zorzi. Improving Responsiveness of Ontology-Based Query Formulation.
Master’s thesis, Faculty of Computer Science, Free University of Bozen-
Bolzano, March 2008.

http://www.sewasie.org/

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Previous Work
	Contribution
	Structure of the Thesis

	Preliminaries
	Conjunctive Queries
	Binary Relations, Orders, and Functions
	Graphs and Trees
	Description Logics

	Theoretical Foundations
	Formal Definition of the Framework
	Functional API
	Reasoning services
	Operations on queries
	Linearisation constraints

	Main Results

	Implementation
	Structure and Design
	Code Examples
	Usage Notes for the Graphical User Interface

	Conclusion and Future Work
	Co-references in queries
	n-ary relations
	Attributes and datatypes

	Class Diagrams
	GUI Screenshots
	Bibliography

